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A perceptual model was developed to evaluate the spatial quality of automotive audio systems
by adapting the Quality Evaluation of Spatial Transmission and Reproduction by an Artificial
Listener (QESTRAL) model of spatial quality developed for domestic audio systems. The
QESTRAL model was modified to use a combination of existing and newly created metrics,
based on—in order of importance—the interaural cross-correlation, reproduced source angle,
scene width, level, entropy, and spectral roll-off. The resulting model predicts the overall spatial
quality of two-channel and five-channel automotive audio systems with a cross-validation R2

of 0.85 and root-mean-square error (RMSE) of 11.03%. The performance of the modified
model improved considerably for automotive applications compared with that of the original
model, which had a prediction R2 of 0.72 and RMSE of 29.39%. Modifying the model for
automotive audio systems did not invalidate its use for domestic audio systems, which were
predicted with an R2 of 0.77 and RMSE of 11.90%.

0 INTRODUCTION

The acoustic environment of automotive audio systems
presents a challenge for the ideal reproduction of spatial au-
dio. This is due to many factors including the small volume
of the automobile cabin, the combination of both highly re-
flective and highly absorptive surfaces, and multiple trans-
ducers being located throughout the cabin and auditioned
from offset seating positions. This acoustic environment
results in perceived spatial degradations such as a lack of
spaciousness, widened auditory source widths, and skewed
localization [1–3]. These spatial degradations make design-
ing and optimizing automotive audio systems challenging.

Assessing perceived spatial quality involves comparing
to a known reference changes in spatial characteristics such
as spaciousness, auditory source widths, and localization.
Comparing the perceived spatial quality of many automo-
tive audio systems using listening tests takes much time and
effort, and statistical analyses which follow the listening
tests also consume much time and resources. Effective per-
ceptual models are a beneficial alternative because they can
predict the perceived quality of stimuli quickly and reliably
within the scope of the target application [4, pp. 11–13],
saving time and effort. Perceptual models have shown their
utility in predicting loudness [5], perceptual audio codec
quality [6], and speech quality [7]. A perceptual model
for automotive audio systems could reduce time and effort

compared to formal listening tests while retaining similar
reliability, either as a replacement for or an aid to listening
tests, which would be conducive to the short development
cycles demanded by the automotive industry.

A literature review revealed that the overall sound qual-
ity of automotive audio systems has been modeled us-
ing metrics related to perceived timbral, spatial, distor-
tion, and speech quality [8]. However, a perceptual model
that specifically predicts the overall spatial quality of auto-
motive audio systems had not been developed. The Qual-
ity Evaluation of Spatial Transmission and Reproduction
by an Artificial Listener (QESTRAL) model already ex-
isted [9–12], which predicts the overall spatial quality
of consumer multichannel audio systems in domestic en-
vironments. Hence, this model was taken as a starting
point to widen its applicability for the automotive audio
environment.

Fig. 1 shows the general procedure of developing a model
for predicting perceptual audio quality [9]. SEC. 1 deals with
the lower path of Fig. 1, which describes the design of a
listening test for collecting overall spatial quality ratings
of automotive audio systems, and the results of this. SEC. 2
deals with comparing the listening test results to predictions
by the QESTRAL model, to evaluate the effectiveness of the
original model. SEC. 3 deals with the final stage of Fig. 1,
which presents how listening test results and metrics were
combined to calibrate a regression model specifically for
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Fig. 1. General procedure of developing a model for predicting
perceptual audio quality (adapted from Rumsey et al. [9]).

automotive audio. SEC. 4 deals with assessing the perfor-
mance of the calibrated regression model, and SEC. 5 deals
with assessing whether the calibrated regression model is
still valid for domestic audio systems.

1 LISTENING TEST

The calibration of a perceptual model that predicts the
overall spatial quality of automotive audio systems requires
the ratings of this attribute from a listening test. The design
and results of this listening test are described in this section.

1.1 Setup
To reliably compare different automotive audio systems,

a headphone-based auralization system was employed. Us-
ing an auralization system allows the listening tests to be
administered blind (which minimizes biases associated with
the appearance of the reproduction system [13]), and allows
rapid switching between stimuli (to avoid the problems of
auditory memory retention, which decays after around 1 s
[14, 15]). Head tracking was incorporated to improve local-
ization by enabling the perceived sound images to remain
stationary regardless of head rotation [16]. Previous exper-

iments have shown that headphone auralization with head
tracking does not result in substantial differences compared
to experiments using in-situ automotive audio environments
[17–19].

The auralization system employed binaural room im-
pulse responses (BRIRs) of domestic and automotive audio
environments measured with a Brüel & Kjær Head and
Torso Simulator 4100 between ±30◦ in 1◦ increments. The
BRIRs were convolved with program items to synthesize
the stimuli. The auralization hardware included Sennheiser
HD 650 headphones, an Xsens head tracker, an RME Ham-
merfall digital signal processing (DSP) sound card, and
a Dell Dimension E520 PC with a solid-state drive run-
ning Windows XP Professional. A headphone filter—which
compensates for the transfer function between the head-
phone transducer and the blocked ear canal [20]—was ap-
plied to the headphones. A MUlti Stimulus test with Hidden
Reference and Anchor (MUSHRA) interface was created
in MATLAB, and the convolution and head tracking were
handled by AM3D Convolution Box.

1.2 Stimuli
The test stimuli were composed of BRIRs convolved

with program items. A reference system based on a 3/2
stereo system [21] housed in an ITU-R BS.1116 compliant
listening room [22] specified a defined level of overall spa-
tial quality to which the stimuli were compared. The “3”
in “3/2” refers to the three front channels—left (L), right
(R), and center (C)—and the “2” refers to the two surround
channels—left surround (LS) and right surround (RS). The
reference system was chosen because it was used in the
development of the QESTRAL model.

Table 1. Automotive audio systems for the listening test. For the Experimental System, “Tuned” refers to all DSP configurations
enabled, whereas “Untuned” refers to all DSP configurations bypassed.

DSP Configurations

Tuned Intermediate Tune

One
Seat

Front
Seats

Rear
Seats

Frequency
Equalization

Level
Alignment

Time
Alignment Untuned

OEM
Systems

Automobiles Audi A8 X

X

Experimental
System

X

Bypassed X X

X X Bypassed

X Bypassed X

X Bypassed Bypassed

X

Audi A6 X

VW Golf X

OEM = Original Equipment Manufacturer.
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Table 2. SAPs for the listening test and their mean ratings
from [23].

SAP Mean Rating

3/2-Channel to 3/1-Channel Downmix 96
3/2-Channel to 2/0-Channel Downmix 74
3/2-Channel to 1/0-Channel Downmix on All

Channels
40

3/2-Channel to 1/0-Channel Downmix 16
3/2-Channel to 1/0-Channel Downmix

Combined with 500-Hz High-Pass Filter on
All Channels

10

There were three categories of BRIRs: automotive audio
systems, spatial audio processes (SAPs), and hidden an-
chors. Ten two-channel and five-channel automotive audio
systems—which were composed of different automobiles
or DSP configurations—were employed to investigate their
degree of differentiation in the presence of the SAPs and
hidden anchors (Table 1).

The automotive audio systems were broadly categorized
as either commercially available or experimental, where
the former includes an Audi A8, Audi A6, and VW Golf,
and where the latter includes a setup which allowed DSP
combinations of frequency equalization, level alignment,
and time alignment. The Audi A8 featured soundfields that
were optimized for either the front or rear seats. The exper-
imental system represents the stages of tuning automotive
audio systems in the real world, beginning with an un-
tuned configuration, followed by various configurations of
intermediate tune, and ending with a tuned configuration.
Although the Audi A8 and Audi A6 were from the same
manufacturer, the former featured waveguide-loaded tweet-
ers located on the dashboard near the base of the A-pillars,
while the latter featured conventional tweeters located in
the upper-door area. The Audi A6 and VW Golf were two-
channel systems, and the Audi A8 and experimental system
were five-channel systems. The automotive audio system
BRIRs were measured for the driver’s seat (i.e., front-left).

The SAPs were a subset of the spatial impairments em-
ployed to develop the QESTRAL model [23]. These spatial
impairments included those commonly encountered in con-
sumer multichannel audio systems, such as downmixing,
altered loudspeaker locations, and interchannel level mis-
alignment. Five SAPs with mean ratings that spanned the
entire range of the assessment scale as evenly as possible—
between 0 and 100—were employed. The SAPs were cho-
sen because they have known scores that the listening test
results can be compared to. These known scores are valid
only in their original context (i.e., in the configuration of
stimuli they were evaluated). Table 2 lists the SAPs and
their mean ratings.

Hidden anchors can minimize potential biases in the
MUSHRA method [24] by providing perceptual references
throughout the assessment scale. High, middle, and low
hidden anchors—which were chosen from the hidden an-
chors and SAPs employed to develop the QESTRAL model
[23]—were employed to calibrate the top, middle, and bot-
tom of the scale. The hidden anchors were functionally

Table 3. Hidden anchors for the listening test.

Hidden Anchor Description

High Anchor 3/2-Channel Reference System
Middle Anchor Channel Order Randomized
Low Anchor 1/0-Channel Downmix Reproduced

Asymmetrically by the Left Surround
Loudspeaker Only

Table 4. Program items for the listening test.

Genre Type Description

Music (Classical) Baroque music excerpt from Johann
Sebastian Bach, “Concerto No.4 in
G-Major.” Wide continuous front stage
including localizable instrument groups.
Ambient surrounds with reverb from
front stage.

Music (Pop) Excerpt from “Faith” by Sheila Nicholls.
Wide continuous front stage, including
guitars, bass, and drums. Main vocal in
center loudspeaker. Harmony vocals,
guitars, and drum cymbals in
left-surround and right-surround
loudspeakers.

TV Sport (Tennis) Wimbledon tennis match. Commentators
and clapping. Commentators panned
midway between the left, center, and
right loudspeakers. Audience clapping
in 360◦.

Table 5. Number of subjects who perceived a difference
between BRIRs of original and truncated lengths.

BRIR
Truncation
(Samples)

Number of
Subjects

3/2-Channel Reference System 12,000 2 out of 6
3/2-Channel to 1/0-Channel

Downmix
12,000 1 out of 6

Audi A8, Front Seats 8,000 1 out of 6
Audi A6 8,000 0 out of 6

different from the SAPs; the former calibrated the assess-
ment scale, and the latter were impaired domestic audio
systems which were compared with automotive audio sys-
tems. Table 3 lists the hidden anchors.

Three five-channel program items used to develop the
QESTRAL model [23]—which aimed to span a represen-
tative range of ecologically valid material—were used in
the listening test. Table 4 lists the program items.

The BRIRs were truncated in length to minimize the de-
mands of real-time convolution, with an A/B-comparison
informal listening test undertaken to ensure that artifacts
were inaudible [25]. Using the tennis program item, four
BRIRs—two domestic audio-based and two automotive
audio-based—of original length and those truncated to ei-
ther 12,000 samples (0.250 s) or 8,000 samples (0.167 s)
were compared over one trial. Six assessors could not con-
sistently perceive (Table 5) and describe any differences be-
tween the original and truncated BRIRs, which suggested
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Table 6. Reverberation times (T20) for BRIRs of original and truncated lengths, averaged over 500 Hz and 1 kHz.

Reverberation Time (s)

BRIR Original Truncated

3/2-Channel Reference System 0.104 0.104 (12,000 samples)
3/2-Channel to 1/0-Channel Downmix 0.127 0.127 (12,000 samples)
Audi A8, Front Seats 0.050 0.052 (8,000 samples)
Audi A6 0.077 0.077 (8,000 samples)

that the truncation effects were minimal compared with the
differences between the BRIRs.

Reverberation times (T20 [26]) of the four BRIRs were
calculated based on BRIRs of the left channel and left ear,
for a 0◦ head angle (Table 6). The results averaged over
the mid-frequency octave bands of 500 Hz and 1 kHz were
identical between the original and truncated BRIRs except
for Audi A8, Front Seats, which differed by 0.002 s. The
BRIRs were truncated at minimum around twice the longest
reverberation time. Although the truncation lengths differed
here, in the main listening test (SEC. 1.4), all the BRIRs
were truncated to 12,000 samples to ensure the stability of
AM3D Convolution Box.

Most comfortable listening levels for headphone repro-
duction were established for each program item to prevent
fatigue over time [25]. Six assessors auditioned each of the
three program items with the reference system, which re-
sulted in the classical item being attenuated by 2 dB, the
pop item by 0 dB, and the tennis item by 5 dB. Each result
was informally auditioned by the experimenter to confirm
its acceptability. The levels resulting from the experiment
were reproduced during the listening tests by configuring
each program item, the RME Hammerfall, and AM3D Con-
volution Box.

The BRIRs were equalized in loudness using the GEN-
ESIS [27] implementation of the loudness model for time-
varying sounds by Glasberg and Moore [28]. In the absence
of a model that predicts binaural loudness, the left and right
ear signals were summed before they were entered into the
loudness model, as binaural loudness can be estimated by
summing the loudness of each ear [5]. The predicted loud-
ness of the BRIRs were within ±0.5 phons of the reference
system.

1.3 Assessors
The listening test employed eleven assessors from the

University of Surrey that consisted of three undergrad-
uate Tonmeister students and seven Ph.D. research stu-
dents from the Institute of Sound Recording, and one
Ph.D. research student from the Centre for Vision, Speech,
and Signal Processing. The ITU-R BS.1116 and ITU-R
BS.1534 standards [22, 24]—which cover the perceptual
assessment of small and intermediate auditory degrada-
tions, respectively—suggest using expert listeners as as-
sessors. The above assessors can be considered expert lis-
teners from their experience with sound recording, formal
listening tests, or both. The assessors were not checked for
normal hearing and their ages were not recorded, although
their listening test results were screened prior to statistical

Fig. 2. User interface of the modified MUSHRA method.

analysis. They were remunerated and participated in three
test sessions.

1.4 Procedure
The assessors’ task was to compare each BRIR to the

reference system and then rate the perceived overall spatial
quality, which is the perceived magnitude of difference in
the spatial domain between a reference and degraded stim-
uli with a subjective judgement of acceptability [25]. The
rating was primarily a fidelity evaluation (i.e., one mea-
suring the degree of similarity to the reference) but also
allowed assessors to give an opinion about the extent to
which any differences were inappropriate, unpleasant, or
annoying. The assessors were provided a list of changes in
spatial characteristics they might perceive and incorporate
in their evaluation, such as location, width, distance, depth,
envelopment, and spaciousness [29]. A modified version of
the MUSHRA method [23] was employed, which intended
to minimize some potential biases in listening tests [30].
Fig. 2 shows the user interface of the modified MUSHRA
method, which employed a label-free assessment scale with
a range between 0 and 100.

The test was administered over three sessions, one for
each program item, to avoid listener fatigue. A total of 48
BRIRs were rated in each session over six pages of evalu-
ations. Each page contained eight BRIRs, where five were
automotive audio systems and SAPs, and three were hidden
anchors that appeared on every page. Each BRIR evalua-
tion was repeated. The presentation order was randomized
for the program items and BRIRs. Each session took less
than 30 min, which was lower than the recommended max-
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imum duration of 40 min [4, pp. 301–303]. The assessors
who participated in the listening test performed less than
1 h of listening tests per day, which was lower than the
recommended total of 2 h per day [4, pp. 301–303].

Prior to each session, the assessors participated in a fa-
miliarization session to reduce errors in the main session
results, which could occur if they are unfamiliar with the
task, user interface, stimuli, or a combination of these. The
results of the familiarization sessions were checked to con-
firm that the assessors used the entire range of the assess-
ment scale (i.e., between 0 and 100). The familiarization
sessions employed the same modified MUSHRA interface
as in the main sessions, and the BRIRs were administered
randomly. The BRIRs included all three hidden anchors, an
SAP, and four automotive audio systems.

1.5 Results
The main reason for the listening test was to establish

whether the QESTRAL model in its current form is capable
of predicting the overall spatial quality of automotive audio
systems. Post-screening of the assessors was performed to
assess the reliability of their ratings. The suitability of the
data for comparison to predictions by the QESTRAL model
was assessed.

1.5.1 Assessor Post-Screening
Post-screening of the assessors was performed using Pan-

elCheck [31] to identify any who provided unreliable over-
all spatial quality ratings and hence should be removed
before performing statistical analysis [25]. The discrimina-
tion ability of the assessors was investigated by the Tucker-
1 correlation loadings, eggshell, and correlation plots. The
consistency of the assessors was investigated by the mean
square error (MSE) plot.

The post-screening revealed that one assessor demon-
strated low discrimination ability and consistency. The
Tucker-1 correlation loadings plot showed that most as-
sessors used the rating scale similarly, apart from the one
divergent assessor who used different criteria to rate over-
all spatial quality. The eggshell plot showed that most as-
sessors ranked the stimuli in a similar order, again apart
from the one divergent assessor who ranked the low-quality
and middle-quality stimuli differently. The correlation plots
showed that each assessor displayed acceptable discrimina-
tion between the stimuli, except for the divergent assessor
whose ratings spanned a very wide range for the low-quality
and middle-quality stimuli. The comments by the divergent
assessor revealed that timbral criteria were used to rate
overall spatial quality, which was contrary to instructions,
and therefore their results were removed from the statistical
analysis.

1.5.2 Statistical Analysis
Statistical analysis was performed to identify the sta-

tistically significant main effects of experimental factors
and their interactions, and to identify the magnitude of
an observed effect (Table 7). A mixed ANOVA model
[4, pp. 203–215] was employed, where “BRIR” and “Pro-

Fig. 3. Means and 95% confidence intervals for BRIR, averaged
over program item, assessor, and repetition. Exp = experimental
system; TA = time alignment; LA = level alignment; Dmx =
downmix; and HPF = high-pass filter.

gram Item” were treated as fixed factors and “Repetition”
and “Assessor” were treated as random factors. The “Rep-
etition” factor was removed because it and its interactions
were not statistically significant or borderline statistically
significant at the 0.05 level. The analysis revealed that all
the experimental factors and interactions were statistically
significant with effect sizes of partial eta squared (η2

p) span-
ning from medium (i.e., ≥0.06 and <0.14) to large (i.e.,
≥0.14) [32]. The effect size ranges are guidelines and need
to be interpreted within the context of the research field.
An R2 measure based on the likelihood ratio [33] showed
that the model was a good fit to the data (i.e., R2

L R = 0.913,
where R2

L R ranges from 0 to 1, and 1 indicates a perfect fit).
Fig. 3 shows the mean overall spatial quality ratings and

95% confidence intervals, which was averaged over pro-
gram item, assessor, and repetition. The BRIR * Program
Item interaction was statistically significant, which means
that certain BRIRs were rated differently depending on the
program item. The (5) Audi A8, Rear Seats and (12) Audi
A6 BRIRs had fairly large interaction effects with program
items. The BRIR * Assessor interaction was statistically
significant, which means that certain BRIRs were rated dif-
ferently depending on the assessor. One assessor rated the
majority of BRIRs consistently lower than other assessors.
These few causes of the statistically significant interactions
with large effect sizes were not considered to substantially
affect the mean ratings of the listening test results.

The highest-rated automotive audio system (i.e., (8) Ex-
perimental System, Time-Alignment Bypassed) was about
half the overall spatial quality of the domestic audio-based
reference system (i.e., (1) High Anchor). The means of the
automotive audio systems spanned between around 25 and
55 points, which appears to be a result of using domes-
tic audio-based BRIRs of much higher and lower relative
quality. The mean width of the confidence intervals is 9.09
points, which is comparable to the average listener rating
error of around 10 points by Conetta [23], who conducted
a similar listening test over loudspeakers.
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Table 7. ANOVA table.

F-ratio Significance Effect Size

BRIR F(17, 153.000) = 88.98 p < 0.001 η2
p = .908

Program Item F(2, 18.000) = 5.38 p < 0.05 η2
p = .374

Assessor F(9, 27.584) = 3.28 p < 0.01 η2
p = .517

BRIR * Program Item F(34, 306.000) = 5.22 p < 0.001 η2
p = .367

BRIR * Assessor F(153, 306.000) = 1.63 p < 0.001 η2
p = .449

Program Item * Assessor F(18, 306.000) = 2.21 p < 0.01 η2
p = .115

BRIR * Program Item * Assessor F(306, 540.000) = 1.70 p < 0.001 η2
p = .491

1.5.3 Listening Test Result Suitability
When the ratings of the automotive audio systems were

combined with those of the hidden anchors and SAPs, the
listening test results spanned a wide range of ratings. As
mentioned previously, the mean confidence interval width
of the listening test results was similar to the average listener
rating error by Conetta [23]. The listening test results, which
evenly span the entire assessment scale, and their mean
confidence interval width, which is similar to that result-
ing from listening tests to develop the QESTRAL model,
suggest that the listening test results can be employed for
a more thorough evaluation of model performance and po-
tential modification of the model if necessary.

2 PERFORMANCE OF QESTRAL MODEL FOR
AUTOMOTIVE AUDIO SYSTEMS

The listening test results were compared to predictions
by the QESTRAL model to evaluate its ability to predict the
overall spatial quality of automotive audio systems. Previ-
ous versions of the model used BRIRs produced from ane-
choic simulations. The latest version of the model [34]—
which was modified to accept measured BRIRs—was em-
ployed to predict the overall spatial quality:

Predicted Overall Spatial Quality

= −0.66 iacc 9band

− 0.60 front angle diff

− 15.88 mean entropy

+ 0.012 std spectral rolloff

+ 341.66 max rms diff

+ 100.00. (1)

Table 8 describes the metrics in the model. The process of
deriving these metrics involves binaural measurements of
soundfields using a set of probe signals [9], followed by
the appropriate calculations to determine a single figure of
merit.

Fig. 4(a) shows predicted overall spatial quality scores
compared to perceived overall spatial quality scores (i.e.,
listening test results). The overall trend is correct but the fit
to some data points is poor: the correlation (R2) was 0.72
and the RMSE was 29.39%. The best-fit line has a large
Y-intercept and shows a large tilt compared with the ideal-
relationship line. On average, the automotive audio systems
[Fig. 4(b)] show a larger difference (i.e., 30.79) between

Table 8. List of the metrics in the QESTRAL model.

Metric Name Description

iacc 9band The mean value of an array of IACC
values for nine critical bands between
570 and 2,160 Hz [35].

front angle diff The mean value of the angle differences
between the reference system and a
DUT in the localization of seven
sound sources in the frontal audio
scene (i.e., ±30◦) [35].

mean entropy The mean value of the left-ear and
right-ear signal entropies [35].

std spectral rolloff The standard deviation of the
high-frequency spectral roll-off over
the total number of time frames in the
binaural signals [25].

max rms diff The maximum value of the RMS level
differences between the reference
system and a DUT for an array of 36
angles spanning ±180◦ [35].

IACC = interaural cross-correlation; DUT = device under test.

predicted and perceived scores compared with the differ-
ence (i.e., 19.95) for hidden anchors and SAPs [Fig. 4(c)].
The model was incapable of accurately predicting the over-
all spatial quality of automotive audio systems because it
could not account for the aspects of spatial quality spe-
cific to them. In the next section, the model is modified to
investigate whether prediction accuracy can be improved.

3 MODEL CALIBRATION

This section covers the development of a modified ver-
sion of the QESTRAL model that accounts for the spatial
characteristics of automotive audio systems. Partial least
squares (PLS) regression was selected as the model cal-
ibration method, which uses a set of orthogonal factors
called latent variables (i.e., PLS components) to predict
response variables (e.g., perceived overall spatial quality)
[36]. The latent variables are decomposed from both predic-
tor variables and response variables, which result in latent
variables that best predict the response variables. PLS re-
gression was chosen for modifying the QESTRAL model
for automotive audio systems because it can be more accu-
rate than other similar methods such as principal component
regression and multiple linear regression, and was success-
fully employed to develop the QESTRAL model [23]. The
nonlinear iterative partial least squares algorithm was cho-
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Fig. 4. Performance of the QESTRAL model. The dashed line
shows the ideal relationship, and the solid line shows the best fit.
The error bars show 95% confidence intervals. Refer to Fig. 3 to
identify BRIRs.

sen to calculate PLS components because it is an accurate
and computationally simple method [37]. The listening test
results from SEC. 1.5 were employed as a calibration dataset
because they were determined to be suitable based on the
analysis performed in that section.

Model calibration proceeded over four stages. These
stages were: recalibration to the dataset from this experi-
ment using the original QESTRAL metrics (Appendix A.1);
replacement of the QESTRAL metrics with more robust
equivalents (Appendix A.2); evaluation of existing addi-
tional metrics (Appendix A.3); and evaluation of new met-
rics to reflect automotive-specific degradations (Appendix
A.4).

3.1 Modified QESTRAL Model
In the first stage of model calibration, the original QES-

TRAL model (Eq. (1)) was recalibrated using the listening
test results from SEC. 1.5, where the cross-validation results
suggested that the model may not generalize to other auto-
motive audio systems. Leave-one-out cross-validation was
used to assess the generalizability of the model, where one
point is left out from the dataset and predicted by a model
created from the remaining data points [38]; this is repeated
for each point in the dataset, and the correlation and error
are calculated across the validation data points.

In the next stage, a metric in the original model based on
maximum values (i.e., max rms diff) was replaced with a
related metric based on mean values (i.e., mean rms diff),
which improved both calibration and cross-validation per-
formance compared with the recalibrated model. Then, ex-
isting additional metrics were iteratively employed to se-
lect an optimal number of metrics and PLS components
that resulted in a potentially generalizable model which
included six metrics and two PLS components. Finally,
to further improve the potential generalizability of the
model, five new metrics were created and assessed, where
when a new metric that accounted for a wide scene width
(i.e., front hemisphere scene width) replaced an existing
metric that accounted for a narrower scene width (i.e.,
front scene width), both calibration and cross-validation
performance improved.

The newly created front hemisphere scene width metric
was incorporated in the six metric/two PLS component
model because acceptable performance was achieved in
terms of a potentially generalizable model. Eq. (2) shows
the regression equation for this result, hereafter referred to
as the modified QESTRAL model.

Predicted Overall Spatial Quality

= −0.68 iacc 9band

− 0.75 front angle diff

− 16.19 mean entropy

− 0.0043 mean spectral rolloff

+ 2514.65 mean rms diff

− 0.17 front hemisphere scene width

+ 99.45, (2)
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Table 9. Progression of model calibration.

Prediction Calibration Cross-Validation

Stage R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) Mean VIF Max VIF

Original Model
(SEC. 2) 0.72 29.39 N/A N/A N/A N/A N/A N/A

Recalibrated Model
(Appendix A.1) 0.74 13.48 0.51 19.59 N/A N/A

Existing Metric Replacement
(Appendix A.2) 0.80 11.73 0.63 17.11 N/A N/A

Large Metric Set,
16 Metrics/3 PLS Components
(Appendix A.3.1) 0.89 8.93 0.74 14.46 9510.850 115704.307

Large Metric Set,
8 Metrics/2 PLS Components
(Appendix A.3.2) 0.88 9.22 0.79 12.91 3.370 7.898

Large Metric Set,
7 Metrics/2 PLS Components
(Appendix A.3.3) 0.88 9.06 0.80 12.69 2.740 5.937

Large Metric Set,
6 Metrics/2 PLS Components
(Appendix A.3.4) 0.89 8.85 0.81 12.19 1.809 2.557

Modified Model
(SEC. 4) 0.91 8.10 0.85 11.03 1.765 2.496

VIF = variance inflation factor.

where iacc 9band, front angle diff, mean entropy,
mean spectral rolloff, mean rms diff, and front
hemisphere scene width are the metrics chosen for the
model. The iacc 9band, front angle diff, and mean entropy
metrics were defined in SEC. 2, while mean spectral rolloff
is defined in Appendix A.3.1, mean rms diff is defined
in Appendix A.2, and front hemisphere scene width is
defined in Appendix A.4.5.

The modified QESTRAL model contains metrics
that are identical to the original QESTRAL model
(i.e., iacc 9band, front angle diff, and mean entropy),
those that are altered from the metrics in the origi-
nal model (i.e., mean spectral rolloff and mean rms diff,
which replaced std spectral rolloff and max rms diff,
respectively), and those that are newly added (i.e.,
front hemisphere scene width). The metrics that were al-
tered or newly added were found to be more relevant for
predicting the overall spatial quality of automotive audio
systems.

The mean spectral rolloff metric replaced std spectral
rolloff because it was believed to be more perceptually rel-
evant to perceived distance and perceived envelopment in
automotive audio systems, had higher Pearson’s correla-
tion to perceived overall spatial quality in automotive au-
dio systems, and was found to contribute toward a more
potentially generalizable perceptual model by employing
fewer PLS components. The mean rms diff metric replaced
max rms diff because it was assessed to be more robust
to extreme values, which possibly accounted more accu-

rately for the alteration of sound-source levels caused by
the acoustic environment of automotive audio systems. The
addition of front hemisphere scene width in the modified
model possibly accounted more accurately for the scene-
width characteristics of automotive audio systems, which
are mainly rendered through a pair of front speakers that are
oriented in an angular range wider than that of the domestic
audio reference system (i.e., ±30◦).

4 PERFORMANCE OF MODIFIED QESTRAL
MODEL FOR AUTOMOTIVE AUDIO SYSTEMS

Table 9 summarizes the progression of modifying the
QESTRAL model for automotive audio systems and Fig. 5
shows for the modified QESTRAL model, the predicted
overall spatial quality scores compared to the perceived
overall spatial quality scores. Two PLS components were
chosen for the modified model because this resulted in the
lowest cross-validation residual Y-variance, which mini-
mizes the chance of an overfitted model. The modified
model was considered to be a good fit to the listening
test results because the majority of the residuals formed
a straight line in a graph of normal probability Y-residuals.
The modified model achieved similar cross-validation per-
formance compared to the original QESTRAL model (R2

= 0.78 and RMSE = 12.00%) [35]. The performance of
the modified model improved considerably compared with
that of the original model [Fig. 4(a)]: R2 increased by 0.19
and RMSE decreased by 21.29%.
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Fig. 5. Calibration and cross-validation performance of the modi-
fied QESTRAL model. The dashed line shows the ideal relation-
ship and the solid lines show the best fit. The darker data refer to
calibration results, while the lighter data refer to cross-validation
results. Refer to Fig. 3 to identify BRIRs.

Fig. 6. Performance of the modified QESTRAL model for only
the automotive audio systems. The dashed line shows the ideal
relationship and the solid line shows the best fit. The error bars
show 95% confidence intervals. Refer to Fig. 3 to identify BRIRs.

Fig. 6 shows for only the automotive audio systems,
the predicted overall spatial quality scores by the modified
QESTRAL model compared to the perceived overall spa-
tial quality scores. The performance of the modified model
improved considerably compared with the original model
[Fig. 4(b)]: R2 increased by 0.53 and RMSE decreased by
25.08. The modified model predicts automotive audio sys-
tems with an RMSE of 8.11% and the best-fit line follows
the ideal-relationship line closely.

Table 10. Standardized coefficients of the modified QESTRAL
model for automotive audio systems.

Metric Name Standardized Coefficient

iacc 9band −0.4531
front angle diff −0.4480
front hemisphere scene width −0.3611
mean rms diff 0.2725
mean entropy −0.1600
mean spectral rolloff −0.1291
constant term 3.6387

Compared with the other automotive audio systems,
BRIRs 8 and 13 had worse calibration and cross-validation
performance (Fig. 5). Fig. 10(a) shows that these two
BRIRs lie on the extremes along the third PLS compo-
nent, which could be interpreted as reflecting the changes
in the high-frequency roll-off point of each BRIR (Ap-
pendix A.4.4). Frequency responses above 1 kHz of the
two BRIRs show broad peaks and dips. A new metric—
such as one that combines the mean spectral rolloff and
log rolloff slope (Appendix A.4.4) metrics—may account
more accurately for the high-frequency characteristics of
the two BRIRs. However, as new metric development—
including front angle raw diff, front angle std, and sur-
round angle diff—has shown (Appendix A.4), improving
the prediction performance of a few outlier BRIRs can
worsen the prediction performance of other BRIRs. Hence,
a new metric could worsen overall prediction performance.
The modifications to the original QESTRAL model showed
that collectively, the ten automotive audio systems were
predicted with an RMSE of 8.11% (Fig. 6).

Table 10 shows the standardized coefficients of the mod-
ified QESTRAL model. The largest standardized met-
ric values were −0.4531 for iacc 9band and −0.4480
for front angle diff, which suggest that changes in per-
ceived source width and changes in localization of sound
images ±30◦ in front of the listener, respectively, are
about equally the most important in predicting overall spa-
tial quality. The next largest metric value was −0.3611
for front hemisphere scene width, which suggests that
changes in perceived scene width ±90◦ in front of the
listener are the next most important in predicting overall
spatial quality.

5 VERIFICATION OF MODIFIED QESTRAL
MODEL FOR DOMESTIC AUDIO SYSTEMS

Modifications to the QESTRAL model for automotive
audio systems could have invalidated its use for domes-
tic audio systems. To evaluate the efficacy of the modified
model for domestic audio, as well as to conduct an ad-
ditional validation, the modified model predictions were
compared to listening test results of SAPs from previous
research [23] (Fig. 7). For these SAPs, which were based
on domestic audio systems, the modified model achieved
similar performance (R2 = 0.77 and RMSE = 11.90%) to
the original QESTRAL model predicting domestic audio
systems (R2 = 0.78 and RMSE = 12.00%) [35].

J. Audio Eng. Soc., Vol. 71, No. 10, 2023 October 697



KOYA ET AL. PAPERS

Fig. 7. Performance of the modified QESTRAL model for domes-
tic audio systems. The dashed line shows the ideal relationship
and the solid line shows the best fit. The error bars show 95%
confidence intervals. Refer to Table G2 in Conetta [23] to identify
SAPs.

The reasons why modifications to the QESTRAL model
have not invalidated its use for domestic audio sys-
tems could be explained by comparing the metrics be-
tween the original and modified models [Eqs. (1) and
(2), respectively]. First, three metrics were identical be-
tween the models (i.e., iacc 9band, front angle diff, and
mean entropy).

Second, two metrics in the modified model were
altered versions of those in the original model (i.e.,
mean spectral rolloff and mean rms diff, which replaced
std spectral rolloff and max rms diff, respectively). The
mean spectral rolloff metric replaced std spectral rolloff
because it was believed to be more perceptually relevant
to perceived distance and perceived envelopment in auto-
motive audio systems. This perceptual relevance could also
apply to the SAPs evaluated in Fig. 7, for example SAP 24,
which applied a 3.5 kHz low-pass filter on all five chan-
nels (i.e., L, R, C, LS, and RS). The mean rms diff metric
replaced max rms diff because it was assessed to be more
robust to extreme values, which possibly accounted more
accurately for the sound-source level differences between
the reference system and automotive audio systems. The
mean rms diff metric also possibly accounted accurately
for the sound-source level differences between the refer-
ence system and the SAPs evaluated in Fig. 7, for example,
SAP 16, which rotated the channel order of the reference
system one channel counterclockwise.

Third, the new addition of the front_hemisphere_
scene_width metric in the modified model possibly did
not affect the prediction accuracy of the SAPs evaluated in
Fig. 7. This is because the majority of their spatial degra-
dations could be accounted for by changes in scene width
between ±90◦.

6 CONCLUSION

A perceptual model that predicts the overall spatial qual-
ity of automotive audio systems was developed. Such a
model is useful for rapid development of automotive audio
systems that aim to match the spatial quality of a reference
for domestic audio systems.

A listening test was conducted to collect overall spa-
tial quality ratings of automotive audio systems. Statistical
analysis of the results supported that they were reliable
and hence suitable to be compared to predictions by the
QESTRAL model.

To determine whether the QESTRAL model is capable
of predicting the overall spatial quality of automotive audio
systems, predictions by the model were compared to the
listening test results. The model, in its original form, was
found to be incapable of achieving this aim because it could
not account for the aspects of spatial quality specific to
automotive audio systems.

Modifications to the original QESTRAL model were
carried out to improve its prediction accuracy for auto-
motive audio systems. Metrics created during the devel-
opment of the original model and those that were newly
created for automotive audio systems—particularly to re-
flect the scene width across a larger range of angles—
were applied in an iterative way to develop a model for
automotive audio systems that achieved similar perfor-
mance to the original model predicting domestic audio
systems. The cross-validation performance of the modi-
fied model suggested that it can generalize to other au-
tomotive audio systems. In addition, modifications to the
original model did not invalidate its use in domestic audio
systems.

7 FUTURE WORK

Cross-validation is a mathematical estimate of how ac-
curately a perceptual model can generalize outside the cal-
ibration context. Formal validation—which employs new
listening test results—is more reliable than cross-validation
to establish model generalizability. The formal validation
could employ different automotive audio systems, program
items, expert listeners, or a combination of these.

Other future work could include an extension of the
modified QESTRAL model to incorporate immersive au-
dio formats such as Dolby Atmos and MPEG-H Audio
in automotive audio systems. The headphone-based aural-
ization system will need to be validated for these formats
and new metrics—such as those that incorporate height
characteristics—may need to be developed.
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A.1 RECALIBRATION
Four stages were involved to develop a modified QES-

TRAL model for automotive audio systems. These stages
were: recalibration (Appendix A.1); existing metric re-
placement (Appendix A.2); large metric set (Appendix
A.3); and new metric replacement (Appendix A.4).

The original QESTRAL model [Eq. (1)] was recali-
brated using the listening test results from SEC. 1.5 to
explore whether the original metrics with different weight-

ings could improve prediction accuracy. Compared with the
performance of the original model, the performance of the
recalibrated model improved; calibration R2 increased by
0.02 and calibration RMSE decreased by 15.91 (Table 9).
However, the recalibrated model had poor cross-validation
performance (R2 = 0.51 and RMSE = 19.59%), which sug-
gests that the model may not generalize to other automotive
audio systems.

A.2 EXISTING METRIC REPLACEMENT
The robustness of the metrics in the original model

[Eq. (1)] was evaluated to reveal any metrics that were
unduly influenced by extreme values. The iacc 9band,
front angle diff, and mean entropy metrics are based on
calculating averages, hence they should be more robust to
extreme values compared with metrics based on minimum
or maximum values. The std spectral rolloff metric is based
on calculating a standard deviation, hence it should also be
more robust to extreme values. However, the max rms diff
metric is based on calculating a maximum value, and there-
fore could be unduly influenced by extreme values.

The max rms diff metric was replaced by a more robust
level-based metric called mean rms diff that calculates—
for an array of 1-s pink-noise probe signals panned from
0◦ to 360◦ in 10◦ increments on the horizontal plane—the
mean value of the level differences between the reference
system and a device under test (DUT) [39]. This was imple-
mented in the model, and the results showed that this im-
proved both calibration and cross-validation performance
compared with the recalibrated model in Appendix A.1;
calibration R2 increased by 0.06 and calibration RMSE de-
creased by 1.75, while cross-validation R2 increased by 0.12
and cross-validation RMSE decreased by 2.48 (Table 9).

A.3 LARGE METRIC SET
The results so far indicated that the revised model still

failed to accurately predict the spatial quality of some au-
tomotive audio systems, suggesting that additional metrics
were needed to account for features unique to automotive
audio systems. To account for this, metrics pooled from
those employed to develop the QESTRAL model [25] and
those from the current literature [40] that were surmised
to be relevant to the spatial quality of automotive audio
systems were implemented. An iterative process was un-
dertaken to test and select the most relevant metrics, over
four stages (Appendixes A.3.1 to A.3.4).

A.3.1 16 Metrics/Three PLS Components
There were 16 metrics employed initially, all of which

were based on binaural signals from artificial-head mea-
surements (binaural signals were considered to be poten-
tially more perceptually relevant, especially compared with
first-order microphone signals, due to the inherent head-
related filtering). The mean spectral rolloff metric is the
mean of the high-frequency spectral rolloff over the to-
tal number of time frames in the measured binaural sig-
nals [35]. The std spectral rolloff metric, which was in-
cluded in the original model [Eq. (1)], was replaced with
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Fig. 8. Residual Y-variance as a function of PLS component number for the iteration that employed 16 metrics and 3 PLS components.
The bottom data refer to calibration results, while the top data refer to cross-validation results. Although residual Y-variance was
calculated for 16 PLS components, only 10 PLS components are shown for clarity.

mean spectral rolloff because the latter metric was believed
to be more perceptually relevant to perceived distance and
perceived envelopment in automotive audio systems [25],
had higher Pearson’s correlation to perceived overall spatial
quality in automotive audio systems, and was found to con-
tribute toward a more potentially generalizable perceptual
model by employing fewer PLS components.

The residual cross-validation variance of the response
variable (e.g., perceived overall spatial quality) can be in-
terpreted as the error resulting from predicting new datasets
[37]. The number of PLS components that coincide with
the minimum residual cross-validation variance results in
a model that is optimal regarding future prediction accu-
racy [41]. A lower number of PLS components can lead
to an underfitted model, whereas a higher one can lead
to an overfitted model. Three PLS components were cho-
sen, as this number coincided with the minimum residual
cross-validation variance (Fig. 8). This iteration showed
acceptable performance for calibration, but not for cross-
validation as the RMSE was a little high at 14.46% (Ta-
ble 9).

Standardized coefficient and variance inflation factor
(VIF) values of the metrics were evaluated. Standardized
coefficients of a PLS regression model enable direct com-
parison of the relative effect of each independent variable
(e.g., each metric) on the dependent variable (e.g., predicted
overall spatial quality). The standardized coefficients are
calculated from standardized data, which are created by
subtracting the mean of the metric values from each met-
ric value and then dividing by the standard deviation [42].
VIF—which is a measure of multicollinearity where two
or more metrics have a strong linear relationship—was em-
ployed to remove metrics that were redundant toward pre-
dicting overall spatial quality. The values of VIF employed
to determine multicollinearity were a mean VIF criterion

of substantially greater than 1 [43], and a maximum VIF
criterion of greater than 10 [44].

The number of metrics was reduced because the maxi-
mum VIF criterion was far exceeded. The max angle diff,
max iacc, max iacc 9bands, 1/(1 − max iacc), and
max rms diff [25] metrics were removed because metrics
based on maximum values are not robust to extreme val-
ues. The mean iacc and mean iacc 9bands metrics were
removed because the iacc 9band metric contributed the
most toward predicting overall spatial quality (i.e., the stan-
dardized coefficient values were 0.029, 0.126, and −0.156,
respectively). The mean angle diff metric was removed be-
cause it demonstrated collinearity with front angle diff (R
= −0.976, p < 0.001) and contributed less toward predict-
ing overall spatial quality (i.e., its standardized coefficient
value was 0.179 compared with −0.244).

A.3.2 Eight Metrics/Two PLS Components
The eight metrics that remained after the reduction proce-

dure in the previous iteration were employed for a new iter-
ation. Although the global minimum of the residual cross-
validation variance was located at four PLS components
(i.e., at 0.221), two PLS components were chosen as this
number coincided with the first local minimum of the resid-
ual cross-validation variance (i.e., at 0.223). Esbensen et al.
[37] recommend that the first local minimum is employed
because choosing fewer PLS components leads to a more
robust model that is less sensitive to noise and errors. This
iteration displayed acceptable performance for calibration
but not for cross-validation due to its slightly high RMSE
of 12.91% (Table 9).

The standardized coefficients and VIF values of the met-
rics were evaluated to remove any metrics that contributed
little toward predicting overall spatial quality. The hull
metric—which could be considered as a measure of spa-
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Fig. 9. Correlation loadings for the iteration that employed six metrics and two PLS components. The outer ellipse represents 100%
explained variance, the inner ellipse represents 50% explained variance, and the middle of the ellipses represents no variance explained
by either the first or second PLS component. The numbers in the parentheses refer to the total variance each PLS component explains.
The first number refers to the X-variance (i.e., the metrics), and the second number refers to the Y-variance (i.e., perceived overall spatial
quality).

tial scene width [11]—was removed because it contributed
the least toward predicting overall spatial quality; its stan-
dardized coefficient value was the smallest at −0.058. The
removal reduced the chance that this iteration of the model
overfitted the calibration data.

A.3.3 Seven Metrics/Two PLS Components
The seven metrics that remained after the reduction pro-

cedure in the previous iteration were employed for a new it-
eration. Two PLS components were chosen because a break
from a monotonic decrease was observed in the residual
cross-validation variance. Esbensen et al. [37] mention this
criterion—in addition to choosing the number of PLS com-
ponents based on the minimum residual cross-validation
variance—to choose the optimal number of PLS compo-
nents for a potentially generalizable model. This iteration
demonstrated acceptable performance for calibration but
not for cross-validation due to its slightly high RMSE of
12.69% (Table 9). The standardized coefficients and VIF
values of the metrics were evaluated to remove any met-
rics that contributed little toward predicting overall spatial
quality. The 1/(1 − mean iacc) [25] and iacc 9band metrics
demonstrated the highest VIF values (i.e., 4.384 and 5.937,
respectively). Of the two, 1/(1 − mean iacc) was removed
because it contributed less toward predicting overall spatial
quality; its standardized coefficient had a lower value than
that of iacc 9band (i.e., 0.192 and −0.401, respectively).

A.3.4 Six Metrics/Two PLS Components
The six metrics that remained after the reduction pro-

cedure in the previous iteration were employed for a new
iteration. Two PLS components were chosen, as this number
coincided with the minimum residual cross-validation vari-

ance. This iteration demonstrated acceptable performance
for calibration but not for cross-validation as the RMSE
was still slightly high at 12.19% (Table 9).

The standardized coefficients and VIF values of the met-
rics were evaluated to remove any metrics that contributed
little toward predicting overall spatial quality. To examine
this iteration of the model in more detail, a correlation load-
ings plot was analyzed, which shows how the metrics and
perceived overall spatial quality are correlated with the first
two PLS components (Fig. 9). The mean spectral rolloff
metric is near the center of the plot, and had the lowest
standardized coefficient of −0.130, which means that it
contributed the least toward predicting overall spatial qual-
ity. However, upon analyzing a further iteration without the
metric (i.e., five metrics and two PLS components), its pres-
ence revealed improved calibration and cross-validation
performance, decreased the mean VIF from 1.875 to 1.809,
and improved the accuracy of the predicted score for BRIR
13 (the VW Golf) for calibration. This BRIR displayed
early roll-off of high frequencies, which the metric could
account for. Hence, mean spectral rolloff was retained and
the iterations were terminated at six metrics and two PLS
components.

A.4 NEW METRIC REPLACEMENT
The model developed by iteratively narrowing down a

large set of metrics exhibited cross-validation RMSE that
was slightly high. To further improve the potential gen-
eralizability of the model, five new metrics were created
and their performance was assessed (Appendixes A.4.1 to
A.4.5).
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A.4.1 Localization-Related Metric -
front angle raw diff

Regression analysis indicated that localization-related
metrics were highly correlated to the second PLS com-
ponent, which accounted for 22% of the variance in the
data, so additional localization metrics were evaluated. In-
formal audition of automotive audio systems considered
to be outliers [i.e., BRIRs 8 and 13 in Fig. 4(a)] revealed
differences in spatial scene skew. The front angle raw diff
metric was created to investigate whether—compared with
the front angle diff metric—a different approach to averag-
ing multiple localization angles could model spatial scene
skew more accurately for these outliers. The metric is a
modified version of front angle diff that is based on the
mean of the raw differences of the angles which can ac-
count for skew direction.

An exploratory model was created to assess whether
the new metric can further improve the performance
of the six metric/two PLS component model developed
in Appendix A.3.4. When front angle raw diff replaced
front angle diff, both calibration and cross-validation per-
formance worsened. For calibration, R2 decreased by 0.18
and RMSE increased by 5.44, while for cross-validation, R2

decreased by 0.30 and RMSE increased by 7.56 (Table 11);
the prediction improved for the outliers but at the expense
of other BRIRs. Therefore, this metric was not retained.

A.4.2 Localization-Related Metric -
front angle std

An alternate predictor of spatial scene skew was eval-
uated: front angle std calculates the standard deviation of
the differences in localization angles in the frontal audio
scene (i.e., ±30◦) between the reference system and a DUT.
When front angle std replaced front angle diff, both cali-
bration and cross-validation performance again worsened.
Calibration R2 decreased by 0.08 and cross-validation R2

decreased by 0.11 (Table 11). Calibration RMSE increased
by 2.69 and cross-validation RMSE increased by 3.16. This
metric had a mixed effect on the outliers mentioned above:
the calibration and cross-validation of BRIR 8 improved
while those of BRIR 13 worsened. This metric was also not
retained.

A.4.3 Localization-Related Metric -
surround angle diff

The locations of the left-surround and right-surround
loudspeakers in five-channel automotive audio systems
are likely to have shifted from those in a standardized
five-channel surround system [21]. These shifts—along
with the shifts of the front-left, front-right, and center
loudspeakers—could affect perceived scene skew, partic-
ularly that of the two outliers [i.e., BRIRs 8 and 13 in
Fig. 4(a)]. The ±110◦ angular range—which coincides with
the locations of the surround loudspeakers—could also ac-
count more accurately for the scene skew in certain domes-
tic audio degradations based on downmixes (e.g., the low
anchor, which reproduced a 1/0-channel downmix through
the left-surround loudspeaker). To better account for these

situations of scene skew, a localization-related metric called
surround angle diff was created. The metric is calculated
similarly to the front angle diff metric but with an extended
angular range of ±110◦.

When surround angle diff replaced front angle diff, cal-
ibration performance slightly worsened where R2 decreased
by 0.01 and RMSE increased by 0.53, though cross-
validation performance improved (Table 11). The replace-
ment improved the prediction accuracy for the two outliers
along with many other BRIRs. However, this was at the
expense of substantial overprediction of the high anchor
and substantial underprediction of the 3/2-Channel to 3/1-
Channel Downmix, so this metric was not retained.

A.4.4 Timbre-Related Metric - log rolloff slope
Fig. 10 shows the score and loading plots for the six

metric/two PLS component model. The first and third PLS
components are shown in the plots. In the scores plot, four
automotive audio systems lie along the third PLS compo-
nent (i.e., BRIRs 8, 5, 4, and 13). BRIR 13 in the scores plot
is similar in direction—along the third PLS component—
to the mean spectral rolloff metric in the loadings plot, and
hence the third PLS component could be interpreted as
changes in timbre [37], or more specifically, changes in the
high-frequency roll-off point of each BRIR. Informal audi-
tion of the four automotive audio systems revealed that the
magnitude of the high-frequency content matched the order
along the third PLS component: BRIR 8 was perceived to
have the most high-frequency content, followed by BRIRs
5, 4, and 13.

The values of the high-frequency roll-off point (i.e., the
values of the mean spectral rolloff metric) for the four au-
tomotive audio systems were compared. The ordering of
the automotive audio systems along the third PLS com-
ponent did not agree with that of the values of the high-
frequency roll-off point, so a more accurate metric of the
high-frequency variation was sought.

Table 12 lists the slopes of high-frequency roll-off for
the four automotive audio systems (i.e., BRIRs 8, 5, 4,
and 13). The monotonically increasing slope rates were
consistent with the order of the automotive audio systems
along the third PLS component. Based on these results,
a timbre-related metric called log rolloff slope was cre-
ated based on the slope of the high-frequency roll-off be-
tween 5 and 10 kHz on a logarithmic frequency scale.
This frequency range was chosen because the slopes varied
the most.

When log rolloff slope replaced mean spectral rolloff,
the predicted overall spatial quality scores for calibration
and cross-validation of BRIR 8 were virtually unchanged,
while those of BRIR 13 became less accurate (i.e., the
error increased by 10.10 points for calibration and 3.97
points for cross-validation). The replacement also caused
mean VIF to increase from 1.809 to 2.363, which suggests
multicollinearity. Finally, the replacement decreased model
performance (Table 11). This metric was therefore not re-
tained.
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Table 11. Performance of new metrics when incorporated in six metric/two PLS component model.

Calibration Cross-Validation

Type Metric R2 RMSE (%) R2 RMSE (%)

Localization front angle raw diff 0.71 14.29 0.51 19.75
Localization front angle std 0.81 11.54 0.70 15.35
Localization surround angle diff 0.88 9.38 0.83 11.68
Timbre log rolloff slope 0.86 9.88 0.78 13.06
Scene Width front hemisphere scene width 0.91 8.10 0.85 11.03

Fig. 10. Plots that aid interpreting the BRIRs that lie along the third PLS component for the six metric/two PLS component model. The
numbers in the parentheses refer to the total variance each PLS component explains. The first number refers to the X-variance (i.e., the
metrics), and the second number refers to the Y-variance (i.e., perceived overall spatial quality). Refer to Fig. 3 to identify BRIRs.
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Table 12. Slopes of high-frequency roll-off and BRIR distribution order from the top to bottom of the third
PLS component.

BRIR Number BRIR Name Slope (dB/octave)

Distribution Order
Along Third PLS

Component

8 Tech Car, Time-Alignment Bypassed −10.5 8
5 Audi A8, Rear Seats −11.1 5
4 Audi A8, Front Seats −12.2 4
13 VW Golf −16.4 13

A.4.5 Width-Related Metric -
front hemisphere scene width

Informal audition revealed differences in perceived
scene width between the outliers [i.e., BRIRs 8
and 13 in Fig. 4(a)]. A width-related metric called
front hemisphere scene width was created to investigate
whether a wider scene width compared with the one de-
termined by the front scene width metric could account
more accurately for the perceived scene width of these
outliers. The front hemisphere scene width metric calcu-
lates the largest angle spanned by a spatial scene in front
of the listener between ±90◦ as opposed to ±30◦ for
front scene width [25].

When front hemisphere scene width replaced
front scene width, calibration and cross-validation
performance improved (Table 11). Both calibration and
cross-validation R2 increased (i.e., by 0.02 and 0.04,
respectively), and both calibration and cross-validation
RMSE decreased (i.e., by 0.75 and 1.16, respectively).
The replacement improved the predicted overall spatial
quality scores of the two outliers for both calibration and
cross-validation, without a substantial increase in error for
the other stimuli. Hence, this metric was retained.

J. Audio Eng. Soc., Vol. 71, No. 10, 2023 October 705



KOYA ET AL. PAPERS

THE AUTHORS

Daisuke Koya Russell Mason Martin Dewhirst Søren Bech

Daisuke Koya received a B.S. degree in electrical engi-
neering from the University of California at Los Angeles,
Los Angeles, CA; an M.S. degree in music engineering
from the University of Miami, Coral Gables, FL; an MRes
degree in audio engineering from the University of Essex,
Colchester, UK; and an MPhil degree in sound recording
from the University of Surrey, Guildford, UK. His MPhil
research was funded by Bang & Olufsen, and it investigated
the modeling of spatial quality in automotive audio sys-
tems. His research interests include psychoacoustics and
loudspeakers. He has had internships at Harman Interna-
tional and Apple Inc., and he has worked as a loudspeaker
engineer.

•
Russell Mason was awarded a Ph.D. in audio engineering

and psychoacoustics from the University of Surrey in 2002
and is currently a senior lecturer in the Institute of Sound
Recording, University of Surrey, with over 100 published
journal and conference papers. His research interests are
focused on psychoacoustic engineering, and he has led the
development of subjective evaluation methods and com-
putational models of aspects of auditory perception, for
application in spatial audio, evaluation of timbre, source
separation, and personal sound zones.

•
Martin Dewhirst studied mathematics for his Master’s

degree at UMIST in Manchester, UK, and received his
Ph.D. in modeling spatial aspects of psychoacoustics from
the University of Surrey, UK. Following six years lecturing

at the Institute of Sound Recording at the University of
Surrey, he is now a senior software and firmware engineer
at Focusrite working on digital audio interfaces and digital
signal processing.

•
Dr. Søren Bech is Director of Research at Bang &

Olufsen and Professor of Audio Perception at Aalborg Uni-
versity, Section AI and Sound, The Technical Faculty of IT
and Design. Dr. Bech is also Adjunct Professor at Sur-
rey University (GB) and McGill University (CAN). He re-
ceived an M.Sc. and Ph.D. from the Department of Acous-
tic Technology (AT) of the Technical University of Den-
mark. From 1982–1992, he was Research Fellow at AT
studying perception and evaluation of reproduced sound
in small rooms. Dr. Bech has authored 50 peer-reviewed
journal papers and more than 90 conference contributions.
He has been PI of 19 funded (EU and national funding
bodies) international collaborative research projects. He
is Fellow of the Acoustical Society of America and the
AES, is past Governor and Vice-President of the AES,
and now serves as associate technical editor of the Journal
of the AES. Dr. Bech has been vice-chair of the Interna-
tional Telecommunication Union working group 10/3. His
research interest includes psychoacoustics and in partic-
ular human perception of reproduced sound in small and
medium-sized rooms. Other interests include experimen-
tal procedures and statistical analysis of data from sensory
analysis of audio and video quality.

706 J. Audio Eng. Soc., Vol. 71, No. 10, 2023 October


