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Disembodied electronic sounds constitute a large part of the modern auditory lexicon, but
research into timbre perception has focused mostly on the tones of conventional acoustic
musical instruments. It is unclear whether insights from these studies generalize to electronic
sounds, nor is it obvious how these relate to the creation of such sounds. This work presents
an experiment on the semantic associations of sounds produced by FM synthesis with the aim
of identifying whether existing models of timbre semantics are appropriate for such sounds.
A novel experimental paradigm, in which experienced sound designers responded to semantic
prompts by programming a synthesizer, was applied, and semantic ratings on the sounds
they created were provided. Exploratory factor analysis revealed a five-dimensional semantic
space. The first two factors mapped well to the concepts of luminance, texture, and mass.
The remaining three factors did not have clear parallels, but correlation analysis with acoustic
descriptors suggested an acoustical relationship to luminance and texture. The results suggest
that further inquiry into the timbres of disembodied electronic sounds, their synthesis, and their
semantic associations would be worthwhile and that this could benefit research into auditory
perception and cognition and synthesis control and audio engineering.

0 INTRODUCTION

The term “timbre” refers to a set of perceptual attributes
that listeners use to discriminate different sounds, in addi-
tion to pitch, loudness, duration, spatial position, and the
acoustic environment. Timbre is an inescapable component
of the auditory experience. It enables listeners to identify
who is speaking to them and ascertain the source of a sound,
and it is of central importance to the aesthetic experience
of music [1].

Increasingly the timbral world is populated by sounds
with no discernible physical source, which are referred
to in this article as disembodied sounds. Contemporary
sound design tools and sound reproduction apparatus pair
to enable listeners to experience sounds seemingly uncon-
strained by the acoustics of a physically resonating body.
Such sounds now permeate day-to-day life in the form of
notifications and alerts, heighten the visceral satisfaction
received from movies and games, and have defined entirely
new audio cultures [2]. Scientific understanding of timbre,
however, is largely limited to insights gleaned from stud-
ies on musical instrument sounds playing isolated notes.

This work sets out to systematically examine sounds that
lack the kind of source-cause associations afforded by mu-
sical instruments through a novel experimental paradigm in
which participants synthesize electronic sounds prompted
with well-established semantic dimensions of timbre.

Studying the perception of disembodied electronic
sounds may help further elucidate the mechanisms under-
pinning the experience of timbre [3, 4]. Specifically the way
such timbres are talked about can disclose significant infor-
mation about the way they are perceived [5, 6]. Common
semantic dimensions for musical instrument sounds have
been summarized as brightness/sharpness (or luminance),
roughness/harshness (or texture), and fullness/richness (or
mass) [7]. A primary aim of this study was to ascertain
whether such dimensions are sufficient to describe the tim-
bral variability of sounds produced by an FM synthesizer.
This study also sets out to identify whether prompting syn-
thesis with semantic descriptors would result in a discern-
able impact on the control of synthesizer parameters.

Beyond psychoacoustic insight, inquiry into the percep-
tion of disembodied timbres can inform further research
in audio engineering and sound design. Many of today’s
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most popular software and hardware synthesizers do not
represent a significant progression from the approach of
early synthesizers—their controls continue to direct the
synthesis at a low level, with complex systems of inter-
dependence, limiting the ability of musicians and sound
designers to predictably alter the perceptual attributes of
a sound [8]. Previous work aiming to facilitate synthesis
control by mapping from a conceptual representation, such
as a timbre dissimilarity space [9, 10], high level features
[11], or spatial representations of source-cause cues [12,
13] has focused on perceptual insights from research on
acoustic sound sources. Thus studying the perception of
disembodied timbres may also lead to insights into how
synthesis control can be improved to more closely map to
perception. To facilitate further research in this direction,
the dataset of sounds generated in this study has been made
available.1 Full parameter configurations, semantic ratings,
acoustic features, and anonymous participant questionnaire
responses are provided, alongside rendered audio of all syn-
thesized sounds.

0.1 From Sounds to Adjectives
The perception of timbre has enjoyed an extensive lin-

eage of scientific inquiry, dating at least as far back as
Helmholtz’s [14] treatise On The Sensations of Tone. It is
widely agreed to be a multi-faceted percept, and so two pre-
vailing approaches to its study—perceptual and semantic—
both seek dimensional decompositions of the timbre gestalt
[1].

The first approach aims to directly tap into the perceptual
structure of timbre by collecting pairwise general dissimi-
larity ratings on a set of sounds. Multidimensional scaling
(MDS) techniques are then applied to recover a spatial con-
figuration known as “timbre space” in which the distance
between points corresponds to their perceived timbral dif-
ference. Today a number of MDS studies have confirmed at
least two robust perceptual dimensions of timbre [15–18].
These correlate well with the duration of the attack part
of the temporal envelope and the center of gravity of the
spectral envelope, respectively. Additional dimensions ap-
pear to depend on the specific stimulus set. More recently
a study applied a biologically inspired model that involved
learning kernel distance functions over data from 17 previ-
ous dissimilarity studies [19]. Results showed that as well
as sharing general acoustic correlates, each study’s dataset
yielded a number of experiment-specific correlates, sug-
gesting that care should be taken in generalizing the results
of any particular timbre study.

The second approach involves studying timbre percep-
tion indirectly through its semantic associations, that is,
how language is employed to describe the timbre of a sound
via cross-modal, onomatopoeic, or abstract metaphor [7].
Building on the underlying assumption that the percep-
tual attributes of timbre are encapsulated in its verbal de-
scriptions, dimensionality reduction techniques, such as ex-

1The semantic FM dataset is available on Zenodo:
https://doi.org/10.5281/zenodo.4609790.

ploratory factor analysis and principal components analysis
(PCA), are used to construct semantic timbre spaces from
ratings of stimuli along verbally anchored scales. These are
typically constructed either by two opposing descriptive ad-
jectives, such as “rough-smooth” (known as the semantic
differential method [20]), or an adjective and its negation,
as in “rough–not rough” (known as the verbal attribute
magnitude estimation method [21]).

This approach has a long history in empirical research on
timbre, being first used in 1958 to study sonar sounds [22],
about a decade before the early MDS studies of the 1970s
[15, 16]. It was first applied to musical sounds in 1974 by
von Bismarck [23], who used synthetic recreations of in-
strumental and vocal timbres. It has since been employed
in numerous studies of musical timbre [24, 21, 25, 18, 26]
(for a comprehensive review, see [7]). Despite differences
in methodology (choice of verbal scales and dimensionality
reduction technique) and stimuli, there is clear similarity be-
tween the semantic dimensions recovered by many of these
studies. Typically a low-dimensional semantic space of tim-
bre can be interpreted in terms of brightness/sharpness,
roughness/harshness, and fullness/richness, although the
precise demarcations between dimensions vary [7].

Zacharakis et al. [26] performed an interlanguage study
with musically experienced Greek and English-speaking
listeners, where responses from both linguistic groups were
well explained by a model that also exhibited these three
semantic dimensions. It was named the luminance-texture-
mass (LTM) model based on the strongest factor loadings
from both languages. A confirmatory study [27] using two
representative scales (highly loaded) for each of the three
factors, conducted with the same stimuli but Greek listeners
only, suggested the model was broadly effective for pre-
dicting both semantic ratings and pairwise dissimilarities.
However the attack-time dimension emerging from anal-
ysis of pairwise dissimilarities, which differentiates more
impulsive from more sustained temporal envelopes, could
not be directly captured by the LTM dimensions.

More recently a 20-dimensional model has been pro-
posed, derived from a mixture of interviews with and
semantic ratings by professional orchestral musicians,
including conductors and composers [28]. They were
asked to imagine orchestral instrument sounds rather
than listen to recorded stimuli, which allowed tapping
into richer and more creative linguistic descriptions.
The model dimensions include rumbling/low/thick (L/M),
soft/singing (T), watery/fluid, direct/loud, nasal/reedy
(M), shrill/harsh/noisy (L/T), percussive (P), pure/clear,
brassy/metallic (L/T), raspy/grainy (T), ringing/long de-
cay, sparkling/brilliant (L), airy/breathy, resonant/vibrant,
hollow (M), woody, muted/veiled, sustained/even (P), open,
and focused/compact. The parenthetical initials indicate po-
tential correspondence to the three LTM factors [26]; “P”
indicates dimensions that relate to contrasting temporal en-
velope types (percussive and sustained).

The majority of this research focuses on physical instru-
ments from the Western tonal music canon. When elec-
tronic and synthesized sounds do find use, it is typically
either for the purposes of simulating the sounds of familiar
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acoustic instruments and the human voice [23, 24] or for
the creation of controlled stimuli designed to elicit a spe-
cific perceptual response [29, 30]. It is not currently clear
how well these multidimensional semantic models might
generalize to more abstract and disembodied sounds, of
the kind that increasingly populate the audio cultures of
today. To this end, a study of electronic and electroacous-
tic “textural” sounds indicated a five-dimensional seman-
tic space: ordered–chaotic, homogeneous–heterogeneous,
tonal–noisy, high/bright–low/dull (L), and smooth–coarser
(T) [5]. Two of these dimensions suggest that luminance and
texture might generalize beyond the musical instrument do-
main. However the tested textural sounds involved multiple
different timbres, iterative envelopes, and/or varying pitch
profiles, all of which may not be suitable to examine the
intrinsic dimensions of timbre per se, as indeed attested by
the labels of the other three dimensions.

0.2 From Adjectives to Sounds
In the research discussed so far, the standard paradigm

involves listeners rating a set of sounds along scales defined
by descriptive adjectives. Stimuli are manipulated along one
or more acoustical dimensions, and the aim is to explain
their perceptual effect on semantic associations. However
this method does not address the relationship between tim-
bre and language from the opposite direction: How does the
perceptual experience of timbre, through its semantic asso-
ciations, relate to the creative process of sound design and
engineering? In other words, how do semantic associations
modulate acoustical response? This important question has
received considerably less attention in the psychoacoustical
literature, despite many relevant efforts to develop intuitive,
adjective-controlled interfaces for audio synthesis and pro-
duction [31–36]. To explore this question, here a semanti-
cally prompted FM synthesis task was used, and semantic
associations of timbre were examined through their acous-
tical imprints on the creation of new sounds, effectively
reverse engineering the standard paradigm.

Controlling the generation of complex audio spectra was
made significantly easier by the invention of FM synthe-
sis. Introduced by Chowning [37] in 1973, it generates
rich spectra with nuanced patterns of spectral energy dis-
tribution. Strictly speaking, FM synthesis as formulated by
Chowning, and as subsequently implemented in numerous
commercial synthesizers, applies phase modulation rather
than frequency modulation. That is, the carrier sinusoid is
modulated by way of an additive term, rather than a mul-
tiplicative one. Pairing each oscillator with an amplitude
envelope allows for further control of the spectrotemporal
evolution of a sound. An FM synthesizer can be highly tim-
brally expressive with only a small number of oscillators
and thus a limited number of parameters.

FM synthesis quickly found application in a variety of
commercial synthesizers, including Yamaha’s legendary
DX7, and its timbral palette became highly influential on
popular music over the subsequent decades but also in
timbre research. In their 1995 timbre dissimilarity study,
McAdams et al. [17] used simulations of traditional West-

ern instruments synthesized by Wessel et al. [38] on a
Yamaha TX802 FM Tone Generator. An earlier study of
timbre semantics by Ashley [39] involved an FM system
that “learned” to map certain controls with adjectives from
users’ verbal descriptions to changes in timbre.

FM timbres, therefore, are ideal as an object of study.
They can be familiar enough as sonic entities to be dis-
tinctly identifiable and attract a varied aesthetic vocabu-
lary while being abstract enough to avoid inherently im-
plying a distinct source cause. Wallmark et al. [40] were
the first to task a sample of classically trained musicians
with creating a new timbre in response to adjectives sourced
from orchestration books. To do so, participants explored
a 2D space that linearly mapped to the controls of a sim-
ple FM synthesizer consisting of one modulator and one
carrier. The experimental interface played a continuous
tone at a fixed carrier frequency, whose spectral properties
were shaped by the 2D controller. It also included a slider
that controlled a distortion amplifier. Results suggested
a relationship between word affect (valence and arousal)
and certain distinct acoustical profiles. For instance, in re-
sponse to both positive and negative high-arousal words
such as brilliant or bright and rough or harsh, musicians
crafted sounds with more strength in higher frequencies and
inharmonicity.

0.3 The Present Study
The present study investigated how semantic associations

modulate timbre perception (from adjectives to sounds) and
vice versa (from sounds to adjectives) in the context of
disembodied electronic sounds. These questions were ap-
proached by adapting the prompted synthesis paradigm [40]
to enable comparative prompts (e.g., create a sound that is
rougher or less rough than a played reference) followed by
comparative ratings (e.g., rate how much rougher or less
rough the created sound is from the reference). To promote
ecological validity, adjectives were collected from an online
message board for modular synthesizer enthusiasts, and the
study focused on timbres created by music and audio tech-
nologists with experience in sound design and synthesis.
Exploratory factor analysis of comparative semantic rat-
ings and principal components analysis of acoustic features
extracted from the created sounds were carried out. Linear
regression and correlation analyses subsequently enabled
quantification of the interrelations between language, psy-
choacoustics, and the adjustment of synthesizer controls.

Whereas the design of Wallmark et al. [40] focused solely
on the effects of spectral energy distribution, because partic-
ipants were shaping only static aspects of a continuous tone,
the design of this study seeks to incorporate spectrotempo-
ral and purely temporal aspects of the FM sounds by provid-
ing a full set of amplitude envelope controls. Three distinct
fundamental frequency (F0) conditions for each compara-
tive prompt were also applied. In research on timbre it is
usual to equalize the F0 of stimuli as pitch and timbre are
known to interact [41, 42]. In this study the authors wanted
to explore whether such an interaction would exert an effect
on synthesizer parameter control, that is, on shaping timbre.
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The authors also wanted to examine the influence of F0 on
the semantic dimensions of FM sounds.

1 METHOD

1.1 Participants
Thirty people took part in the experiment (mean age: μ

= 28.7 years; standard deviation: σ = 7.52 years; range:
21–55 years). All spent their formative years in an English-
speaking country and self-reported prior synthesis expe-
rience via music production or sound design. They com-
pleted the Perceptual Abilities and Musical Training sub-
scales of the Goldsmiths Musical Sophistication Index in-
ventory [43]. Compared to the reference statistics provided
with Goldsmiths Musical Sophistication Index, participants
scored higher on Musical Training (this study: μ = 35.4;
reference study: μ = 26.5) with a narrower distribution of
scores (this study: σ = 6.67; reference study: σ = 11.4).
Scores for Perceptual Abilities were slightly higher (this
study: μ = 53.4, σ = 5.16; reference study: μ = 50.2, σ =
7.86). Participants gave written informed consent prior to
the experiment. The study was approved by the Queen Mary
Ethics of Research Committee (ref: QMREC2352a) and
conducted in accordance with the Declaration of Helsinki.

1.2 Word Stimuli
To maximize the appropriateness of word stimuli selec-

tion to synthesized sounds, a corpus-based approach was
adopted, which involved mining descriptors from a popular
modular synthesis forum.2 Publicly available posts from the
forum dating up to February 21, 2020, were collected, for
a total of 1,407,604 posts. After lemmatization, the corpus
contained 330,700 unique tokens. Posts were filtered to a
frequency-sorted list of words co-occurring in bigrams with
the terms sound, sounding, tone, and timbre, which were
then further filtered to retain only adjectives using Natural
Language Toolkit’s part of speech tagger. This resulted in
a list of 96,277 potential descriptions of timbre, of which
5,977 were unique tokens. The 50 most frequently used
timbral adjectives are displayed in APPENDIX A.1.

The list was independently pruned by two raters accord-
ing to a set of criteria (given in APPENDIX A.2), resulting
in a final set of 27 adjectives (see Table 1). To ensure
variance along the LTM semantic dimensions, three de-
scriptions were selected as prompts for the synthesis task,
namely bright, thick, and rough. These were selected by
filtering the set of 27 adjectives to only those that showed
high loadings onto the English LTM factors in [26]. For
example, brilliant and bright loaded highly onto the lumi-
nance factor. The word with the highest frequency in the
corpus for each factor was then retained—e.g., bright in the
case of the luminance factor.

1.3 Synthesizer
In its simplest form, FM synthesis can generate rich and

complex timbres by time-varying the phase of an oscillator

2https://www.modwiggler.com/forum/.

Fig. 1. A schematic diagram of the three-operator frequency-
modulation synthesizer. Carrier amp., carrier amplitude; Carrier
freq., carrier frequency; Mod freq., modulator frequency; Mod
index, modulation index.

(carrier) via the output of a second oscillator (modulator)
[37]. This is illustrated by Eq. (1):

x(t) = A sin(ωct + I sin ωmt), (1)

where A is the overall amplitude, ωc the carrier frequency,
ωm the modulation frequency, and I the modulation index.
Note that Eq. (1) strictly describes phase modulation rather
than frequency modulation, which produces an equiva-
lent magnitude spectrum when using sinusoidal oscillators.
Because FM synthesizers are typically implemented with
phase modulation, this formulation was used for the exper-
imental synthesizer.

The synthesizer used in the experiment consisted of three
sinusoidal oscillators (hereafter also referred to as opera-
tors) with an accompanying amplitude envelope and fre-
quency modulation input. Operators 2 and 3 modulated
the phase of operator 1 in linear combination (see Fig. 1).
Each operator’s amplitude was modulated by an indepen-
dent Attack, Decay, Sustain, Release (ADSR) envelope.
The attack portion was a linear ramp. The decay and re-
lease portions were exponential ramps where the segment
length described the time taken to fall 1 − 1

e of the way to
the target value. The experimental synthesizer is thus given
by Eq. (2):

x(t) = Aε1(t) sin(ω1t + I2ε2(t) sin ω2t + I3ε3(t) sin ω3t),

(2)

where ωi gives the frequency of the ith operator, εi(t) gives
the amplitude envelope value of the ith operator at time t,
and Ii gives the modulation index of the ith operator.

Participants were presented with a set of user controls
for the FM synthesis parameters. In order to be consistent
with the interfaces of popular FM synthesizers, the operator
tuning ratio parameters were divided across two controls:
coarse and fine. The coarse control specified the integer
part of the tuning ratio, and the fine control specified the
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Table 1. Factor loadings of semantic scales after Oblimin rotation. Suggested factor labels are given in parentheses.

F1 F2 F3 F4 F5
(Sharpness) (Mass) (Clarity) (Percussiveness) (Rawness)

Sharp 0.82 –0.07 0.06 0.16 0.07
Metallic 0.75 0.05 –0.05 0.09 0.11
Bright 0.73 –0.22 0.04 0.10 0.05
Harsh 0.72 0.01 –0.18 0.08 0.15
Big 0.30 0.87 –0.03 –0.16 –0.04
Thick –0.15 0.84 –0.10 0.02 –0.04
Deep –0.43 0.70 –0.00 –0.07 0.06
Thin 0.32 –0.70 0.20 0.11 0.02
Clean –0.04 0.02 0.90 –0.02 –0.01
Clear 0.17 –0.04 0.78 0.07 –0.03
Plucky –0.04 –0.09 0.07 0.99 –0.05
Percussive 0.04 –0.02 –0.06 0.78 0.06
Raw 0.01 –0.12 0.12 0.01 0.78
Rich 0.32 0.69 0.08 –0.06 –0.03
Dull –0.69 –0.12 0.02 –0.25 –0.03
Mellow –0.67 –0.04 0.17 –0.12 –0.15
Woody –0.63 0.20 0.01 0.23 –0.18
Warm –0.60 0.42 0.17 –0.06 –0.01
Dark –0.58 0.51 0.06 –0.05 0.19
Aggressive 0.57 0.27 –0.06 0.15 0.33
Sweet –0.03 0.13 0.43 0.10 –0.56
Noisy 0.52 0.10 –0.40 0.11 0.12
Hard 0.49 0.24 –0.14 0.24 0.23
Smooth –0.49 –0.00 0.40 –0.24 –0.08
Complex 0.48 0.36 –0.35 0.10 –0.11
Gritty 0.48 0.26 –0.32 0.18 0.17
Rough 0.42 0.16 –0.26 0.21 0.29

Note: Bold type indicates loadings with an absolute value greater than 0.70.

Fig. 2. The frequency-modulation synthesis interface used by the
participants. Coarse, the integer component of the ratio of the
modulator frequency to the carrier frequency; Fine, the fractional
component (in 10−3 increments) of the ratio of the modulator
frequency to the carrier frequency.

fractional part at a resolution of one thousandth. Dividing
the controls in this way provides two benefits to the sound
designer. Firstly they are able to quickly explore harmonic
tuning ratios by fixing the fine control at zero. Secondly,
because the sideband distribution is very sensitive to the
tuning ratio, the precision of the fine control enables care-
ful exploration of inharmonic values. In order to control
for pitch and amplitude within trials, operator volume and
tuning controls were only made available for modulating
operators. This interface is shown in Fig. 2.

1.4 Procedure
Because of COVID-19, the study was conducted re-

motely. Participants accessed the experiment through a web
browser and were instructed to use high quality headphones.
Recent work suggests that timbre spaces constructed from
pairwise dissimilarities collected online show good config-
urational similarity to those constructed from ratings col-
lected in a laboratory setting [44]. The study was built
using lab.js [45], and the WebAudio API’s AudioWorklet
was used to build a real-time in-browser FM synthesizer.3

The experiment consisted of a series of nine functionally
identical trials, covering each combination of three com-
parative semantic prompts representing the LTM factors
(brighter or less bright, thicker or less thick, and rougher
or less rough) and three pitches (E2, A3, and D5) repre-
senting the low, middle, and high registers. The direction
of comparison (less or more) was selected randomly each
time (i.e., the number of trials was always nine). Each trial
consisted of three steps:

1. A browser-based FM synthesizer was pre-set to gen-
erate a particular sound (the reference sound) with
parameters pr. Participants adjusted the controls to
produce a new sound (the created sound) with pa-

3Source code for the study is available in a GitHub repository:
https://github.com/ben-hayes/fm-synth-study.
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Fig. 3. A schematic diagram illustrating the experimental procedure for a single trial, repeated for each prompt and register. Step 1
(orange): participants synthesize a sound in response to a prompt. Step 2(a) (blue): participants rate the difference between the reference
sound and their created sound in terms of the prompt. Step 2(b) (red): participants rate the difference between the reference sound and
created sound in terms of 26 semantic descriptors.

rameters pc to fulfil the given comparative prompt
(e.g., to create a sound that is brighter or less bright
than the reference).

2. Participants rated the magnitude of the difference
between the sounds described by pr and pc in terms
of the given prompt (e.g., how much brighter or less
bright c is with respect to r). Ratings were input
using a horizontal slider with a hidden range of 0.0
to 10.0 and resolution of 0.1.

3. Participants rated the magnitude of the difference
between the sounds described by pr and pc in terms
of the remaining two prompts (e.g., thick and rough
if the initial prompt was bright) and the 24 additional
timbral adjectives. Ratings were input using a hor-
izontal slider with a hidden range of –10.0 to 10.0
and resolution of 0.1.

During each step, participants were able to listen to both
the reference and created sounds as many times as they
wished. There was no time limit imposed on any step. This
procedure is illustrated in Fig. 3.

In each trial, the starting values of the synthesizer’s pa-
rameters were given by randomly selecting an entry from
the database of sounds created by previous participants.
This approach enabled data to be collected on a wider
range of parameter combinations than would be possible
if the synthesizer was initialized identically for all partici-

pants. Given the sound design expertise of the participants,
this approach also enabled the focus of the analysis to be on
regions of synthesizer parameter space that are of interest
to experienced synthesists. Limitations of this approach are
discussed in SEC. 3.3. To start this process, the database
was initialized with a starting set of nine “seed” sounds,
which were hand-designed by the first author and loosely
based on popular DX7 patches.

2 RESULTS

2.1 Exploratory Factor Analysis
Initial reliability analyses were conducted using Cron-

bach’s α. All 27 semantic scales showed high internal con-
sistency; average α = 0.95 and σ = 0.003. Subsequently
exploratory factor analysis was performed on the compara-
tive ratings given across all 27 adjectives. Factor analysis is
a technique for computing a set of latent factors from data,
incorporating an independent stochastic error for each vari-
able and observation. Each observation of a given variable
can be considered as the sum of some amount of common
variance (referred to as communality) and some amount of
specific variance (consisting of any variance unique to that
variable, plus any observation error).

To build a factor model from comparative ratings, it is
assumed these are estimates of the difference between two
unobserved absolute ratings Xdiff = Xc − Xr + εdiff , where
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Xdiff is the matrix of comparative ratings, Xc and Xr are
matrices of the unobserved absolute ratings of created and
reference sounds respectively, and εdiff is a normally dis-
tributed observation error of mean zero and finite variance.
As a consequence of model linearity, it follows that a factor
model of comparative ratings Xdiff estimates the same load-
ing matrix as a theoretical factor model of the unobserved
absolute ratings given by a union of the elements of Xc and
Xr (see APPENDIX A.3).

Selecting an appropriate number of factors is the subject
of extensive discussion in the literature, and many methods
remain in use. Fabrigar et al. [46] provide a review of such
methods and a discussion of their strengths and weaknesses.
Among the most popular are the Kaiser criterion, Cattell’s
scree test, and Horn’s parallel analysis.

The Kaiser criterion [47] involves retaining as many fac-
tors as there are eigenvalues of the correlation matrix ≥1.0.
In Cattell’s [48] method, a scree plot (correlation matrix
eigenvalues plotted against their indices) is inspected with
the aim of identifying an “elbow” point that signifies an ap-
propriate number of factors. Horn’s parallel analysis [49]
is a bootstrap method in which an identical factor analysis
procedure is conducted on a large number of normally dis-
tributed random datasets of identical shape to the real data.
The eigenvalues or sums of squared loadings (depending
on the method) of the real data are then compared to a
threshold statistic (usually the 95th percentile) from the
randomly generated data. The number of values for which
the real data exceeds the threshold statistic signifies the
appropriate number of factors.

Empirical comparisons of these methods and others sug-
gest that parallel analysis more reliably estimates the appro-
priate number of factors from both real [46] and synthetic
[50] data. Conversely the Kaiser criterion consistently sug-
gested a model with too few factors in the case of real
data and too many factors when applied to synthetic data.
With both real and synthetic data, the scree method was
found to be variable in its accuracy and ambiguous in its
interpretation. Accordingly here a semantic space for the
created timbres was explored using parallel analysis, which
supported a five-factor solution (Fig. 4). Factor analysis
was performed using maximum likelihood estimation with
non-orthogonal Oblimin rotation. A non-orthogonal rota-
tion method was selected to avoid imposing assumptions
about the independence of semantic factors. The factors cu-
mulatively accounted for 74.36% of data variance. Individ-
ual factor variance is not available for the rotated solution
because of the non-orthogonality of the factors.

The loadings of factors onto semantic descriptors are
shown in Table 1. Factor F1 showed strong loadings onto
terms associated with both luminance (including sharp) and
texture (metallic and harsh). Factor F2 showed strong load-
ings onto terms related to mass (big, thick, and negatively
thin). Factor F3 showed strong loadings for the words clean
and clear, factor F4 for plucky and percussive, and factor
F5 for raw. Proposed labels for each factor were chosen on
the basis of either the highest-loading word (F1 and F5) or
one that was deemed to better capture the meaning of the
corresponding dimension (F2–F4).

Fig. 4. A scree plot comparing the factor eigenvalues of the dataset
to the mean and 95th percentile of the factor eigenvalues of the
stochastic datasets generated in parallel analysis. Here it can be
seen that the procedure supports five factors at the 95th percentile
level.

Table 2. Inter-factor correlations and angles.

F1 F2 F3 F4
F2 –0.08

94.4
F3 –0.42 –0.30

114.6 107.7
F4 0.51 –0.17 –0.27

59.3 99.6 105.4
F5 0.37 0.07 –0.44 0.31

68.3 85.8 116.2 72.1

Table 2 reports the inter-factor correlation coefficients (r)
after rotation and the angles between rotated factors (angle
= cos−1(r)). There appeared to be moderate collinearity
between F1 and F3–F5 and between F2 and F3, implying
a degree of semantic entanglement across all five factors in
the model. The lowest correlations were observed with F2,
suggesting that impressions of mass in these FM sounds
might have been perceptually more distinct from the other
four semantic dimensions.

2.2 Acoustic Features Analysis
To study the psychoacoustic underpinnings of the se-

mantic space, a large set of acoustic features were extracted
from the created sounds (shown in Table 3). Spectral fea-
tures were computed on multiple representations, namely
short-time Fourier transform (STFT) magnitude and power
spectra, Bark frequency magnitude spectrum, and harmonic
peak magnitudes [51]. Furthermore harmonic features in-
cluded inharmonicity, odd-to-even ratio, and tristimulus,
and purely temporal features included log attack time, tem-
poral centroid, and zero-crossing rate were computed.

Spectral features were computed using a Hamming win-
dow of size 1,024 with an overlap of 75%, and silent frames
were discarded. Framewise features were summarized by
the median and interquartile range. All features were com-
puted using the Essentia library for Python. Synthesizer
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Table 3. Extracted acoustic features.

Signal Representation Feature Explanation

STFTmag Spectrum Centroid Center of mass of spectral representation
STFTpow Spectrum Spread The statistical variance of the distribution of spectral energy
Bark Spectrum Skewness The asymmetry of the distribution of spectral energy
Harmonic Spectrum Kurtosis Proportional to the amount of energy in the tails of the spectral

distribution
Decrease A linear regression coefficient representing the decreasing slope of

the spectrum
Rolloff The frequency bin below which 85% of spectral energy is contained
Frame Energy The total energy contained in the spectrum
Flatness The ratio between the geometric and arithmetic means of the

spectrum
Crest The ratio between the maximum value and arithmetic mean of the

spectrum

Harmonic Peaks Inharmonicity The energy-weighted divergence of harmonic peak frequencies from
integer multiples of the fundamental

Tristimulus #1 Relative weight of first harmonic
Tristimulus #2 Relative weight of second, third, and fourth harmonics
Tristimulus #3 Relative weight of fifth harmonic and higher
Odd-to-Even Ratio Ratio of energy contained in harmonic peaks with odd index to

energy in those with even index
Noisiness The difference between the total energy in the signal and the energy

contained in harmonic peaks

Amplitude Envelope Log Attack Time The log (base 10) of the time taken for the signal to move from 20%
to 90% of its maximum amplitude

Effective Duration The duration for which the signal is above 40% of its maximum
amplitude

Temporal Centroid The center of mass of the amplitude envelope

Raw Waveform Strong Decay A nonlinear function of temporal centroid and signal energy
Zero Crossing Rate The proportion of signal values that represent sign changes

patches were rendered at 44.1 kHz with a duration of 4 s.
The ADSR envelope was controlled by a gate signal, which
was on (attack, decay, and sustain) for 3 s and off (release)
for 1 s.

The extracted features cannot be assumed to correspond
to independent axes of variation in the sounds under anal-
ysis. Indeed many features exhibit strong correlation. In
order to address this issue, a feature dimensionality reduc-
tion procedure based on that of Zacharakis et al. [26] was
followed. Their approach involved three reduction steps:
Firstly they eliminated multicollinear features by inspect-
ing Spearman rank correlation coefficients and discarding
one member of any pair where |ρ| > 0.8. Secondly they
inspected the Kaiser-Meyer-Olkin (KMO) measure of sam-
pling adequacy, defined as:

KMOi =
∑

j �=i r2
i j

∑
j �=i r2

i j + ∑
j �=i ui j

where R is the data correlation matrix and U is the data par-
tial correlation matrix, that is, the correlations between pairs
of variables controlling for the influence of other variables
in the analysis. Variables with KMO <0.5 were discarded.
Finally they performed PCA with Varimax rotation on the
remaining features.

While this three-step method addresses the issue of cor-
related feature clusters, the remaining variables and, there-
fore, the structure of the resulting component space are
highly dependent on which member of each collinear pair
is retained in the first step. On several runs of the procedure
with different orderings of variables in the first step, dras-
tically different PCA solutions were found. Therefore, to
improve reproducibility and select the most representative
principal components, an extra step was introduced before
the reduction procedure wherein features were sorted by
their maximum absolute Spearman rank correlation coeffi-
cient with any of the semantic factors. Then the member of
each collinear feature pair with the lowest such factor cor-
relation was discarded. The authors believe this filter-based
approach to be sufficient for the task of identifying acousti-
cal correlates and thus leave deeper analysis of features and
application of alternate feature selection methods to future
work.

Because of the large number of features computed, the
threshold for the Spearman rank correlation coefficient was
set at 0.7 and for the KMO measure of sampling adequacy
at 0.7. This resulted in a set of 17 descriptors, which are
listed in Table 4. Parallel analysis, performed on the result-
ing set of features, supported a four-component solution at
the 95th percentile level. PCA was followed by Varimax
rotation to achieve simple structure. The resulting compo-
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Table 4. Principal component (PC) loadings of acoustic features after varimax rotation.

PC1 PC2 PC3 PC4
Spectrotemporal
(Distribution) &

Spectral Shape

Temporal Energy
Variation & Spectral

Slope
Spectrotemporal

(Flatness)
Spectrotemporal

(Crest Factor)

STFTpow Kurtosis IQR 1.00 0.00 0.00 0.00
STFTpow Skewness IQR 0.95 0.08 –0.30 0.02
Bark Spread Median 0.82 0.57 –0.02 –0.11
STFTmag Decrease Median 0.78 0.48 –0.40 0.02
Bark Crest Median 0.76 0.61 0.23 –0.03
Harmonic Kurtosis IQR 0.76 –0.13 –0.19 –0.61
STFTpow Frame erg IQR –0.00 1.00 0.00 –0.00
Harmonic Frame erg IQR 0.46 0.82 0.20 –0.28
Effective Duration –0.44 0.80 0.36 –0.21
Harmonic Decrease Median 0.10 0.76 0.16 0.62
STFTmag Flatness IQR –0.00 –0.00 1.00 0.00
STFTpow Crest IQR 0.19 –0.21 0.94 0.19
STFTmag Crest IQR –0.00 0.00 –0.00 1.00
STFTmag Centroid IQR 0.67 0.31 –0.47 0.48
STFTpow Kurtosis Median 0.69 0.42 0.13 0.58
STFTpow Skewness Median –0.18 0.71 –0.64 –0.22
Bark Centroid Median 0.66 0.72 0.09 0.18

Note: Bold type signifies absolute component loading >0.75. Features with loadings at this level are used to label components, as in [26]. Frame erg,
framewise energy; IQR, inter-quartile range; STFTpow, power spectrogram from short time Fourier transform; STFTmag, magnitude spectrogram from
short time Fourier transform.

nent loadings are shown in Table 4. Features with loadings
above a threshold (set at 0.75) are used to label components.

The first component showed above-threshold loadings
for the medians of spectral decrease [52], Bark spectral
spread, and crest factor. It also showed above-threshold
loadings for IQRs of the skewness and kurtosis of the STFT
power spectrum and harmonic magnitudes. This somewhat
contradictory combination of spectral features implies this
component describes a continuum between specific spec-
trotemporal profiles. The second component shows above-
threshold loadings for median harmonic decrease and the
IQRs of frame energies in both the STFT power and har-
monic magnitude spectra. It also showed a positive loading
for effective duration. These loadings suggest this com-
ponent describes a sound with a longer sustain and high
temporal energy variation.

The third component shows above-threshold loadings for
the IQRs of STFT magnitude flatness and STFT power crest
factor. These loadings imply that a sound with a high score
on this component would contain spectrotemporal modula-
tions that vary between a flat spectral distribution (typically
indicative of a noisy or inharmonic sound) and a spectrum
with a distinct crest. This may suggest that sounds with a
high loading on this component may be more likely to make
use of the amplitude envelopes of the synthesizer’s mod-
ulating operators. The final component shows an above-
threshold loading for the IQR of STFT magnitude crest
factor. This suggests that sounds with a high score on this
component may, again, employ the amplitude envelopes of
the modulating operators in a way that moves between a
pronounced spectral peak and a more even energy distribu-
tion.

Table 5 shows Spearman rank correlation coefficients
between the five semantic factors and the four acoustic

components. To accommodate the comparative nature of
the semantic ratings, analysis was performed using the dif-
ference between the created sound and its reference along
each acoustic component. In interpreting these coefficients
and their significance, it is important to take into account
the large number of sounds in this analysis (n = 270), inher-
ent noise in the dataset caused by the single rating provided
for each sound, and subjectivity of assigning a value to the
applicability of a semantic descriptor. In particular, while
many correlations were significant at the p < 0.001 level,
the strengths of their relationships were moderate.

The first factor (sharpness) showed significant negative
correlations with components PC1, PC2, and PC4 and a sig-
nificant positive correlation with component PC3. Factors
F3–F5 all share a pattern of highly significant correlations
with components PC1 and PC3, with factor F3 inverted
compared to the other two. The second factor (associated
with mass) did not show significant correlations with any
of the principal components of acoustic variation. Similarly
there was no influence of stimulus F0 on any of the semantic
factors.

2.3 Synthesizer Parameters
The perceptual imprints of timbre on the sound design

process were inspected next. In order to identify whether
semantic prompts and the direction of comparison exerted
an effect on the adjustments made to synthesizer controls,
linear regression models were computed for every �(pc −
pr) and F0 with comparative prompt as a categorical vari-
able with six levels, i.e., three adjectives in two directions
of comparison. Estimated regression slopes (β coefficients)
served as indicators of effect size (see Fig. 5).

Similar patterns of linear effects on changes to the modu-
lator tuning and volume parameters for brighter, less bright,
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Table 5. Spearman rank correlation coefficients between semantic factors and acoustic feature principal components, as well as
fundamental frequency.

PC1 PC2 PC3 PC4

Spectrotemporal
(Distribution) &

Spectral Shape

Temporal
Energy

Variation &
Spectral Slope

Spectrotemporal
(Flatness)

Spectrotemporal
(Crest Factor) F0

Factor 1 (Sharpness) –0.58*∗* –0.37*∗* 0.49*∗* –0.25*∗* –0.01
Factor 2 (Mass) 0.09 –0.02 0.09 0.03 0.08
Factor 3 (Clarity) 0.29*∗* 0.17** –0.44*∗* 0.04 –0.03
Factor 4 (Percussiveness) –0.24*∗* –0.03 0.31*∗* –0.14* –0.02
Factor 5 (Rawness) –0.22*∗* –0.10 0.34*∗* –0.10 –0.05

*p < 0.05; **p < 0.01; *∗*p < 0.001.

and less rough prompts were observed, with the polarity of
the effects inverted for the “less” prompts. These effects
were also present for rougher, although they are less pro-
nounced. Given the properties of FM synthesis, these sim-
ilarities are intuitive: these parameters directly dictate the
intensity, energy distribution, and partial distribution of the
modulated signal.

The more thick prompt showed consistent effects on the
amplitude envelope controls of both the carrier and modu-
lating operators. This suggests that thickness is modulated
by manipulating both the sustain of overall amplitude and
sustain of sideband energy. However the width of the 95%
confidence intervals of these effects implies a large degree
of variance in how these controls were actually used in re-
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Fig. 5. Linear effects (β) of comparative semantic prompt derived from linear regression for every frequency-modulation synthesizer
control change and fundamental frequency. Error bars correspond to 95% confidence intervals. A = attack; D = decay; R = release; S
= sustain; T = tuning; V = volume; 1 = carrier; 2/3 = modulators.
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sponse to prompts. In the case of modulator controls, this
may be explained by their equivalence in the architecture of
the synthesizer—that is, swapping the control values of op-
erators 2 and 3 results in an identical sound being produced.
Achieving a change in accordance with a given prompt may
therefore not require the manipulation of all controls capa-
ble of achieving changes along that semantic dimension,
thus weakening the statistical relationship between each
such control and its corresponding prompt.

In general, prompt effects on tuning and volume controls
were observed to be consistently stronger than on ADSR
envelope controls. This may be partially because of the in-
terdependence of synthesis parameters—the strength and
nature of the effect of the ADSR parameters of a modulat-
ing operator are dictated by the values of the corresponding
tuning and volume controls. For example, if the volume
control of an operator is very low, the strength of the effect
of the envelope sustain control may be almost impercepti-
ble. However the weak ADSR effects are probably mostly
because of the lack of a prompt that explicitly describes
temporal characteristics of a signal. Because an explicit
percussive-plucky factor emerged in the analysis of post-
hoc semantic ratings, such a prompt would be a useful
addition to future applications of this prompted synthesis
paradigm.

To examine the relationship between adjustments to syn-
thesizer controls, semantic factors, and the principal axes
of acoustical variation, Spearman’s rank correlation coef-
ficient was computed between synthesizer control changes
�(pc − pr), semantic factor scores, and differences between
created/reference sounds along acoustic principal compo-
nents. These values are displayed in Fig. 6. Correlations
were generally strongest across all factors for the tuning
and volume controls of the modulating operators, suggest-
ing these exerted a larger influence over both semantic
ratings and the resulting acoustic properties of synthesized
sounds. Modulator volume, however, appeared to exhibit
almost no relationship with factor F2 (mass), while cor-
relating significantly with all other semantic factors and
acoustic principal components. This may imply that the
concept of semantic mass is less significantly influenced
by the sideband energy in the signal.

Comparatively correlations with ADSR envelope con-
trols were generally weaker, although the carrier operator’s
attack control showed moderately strong inverse relation-
ships with factors F1 (sharpness), F4 (percussive), and F5
(rawness). Modulator attack controls also showed moderate
negative correlations with F4 suggesting, as might be ex-
pected from musical intuition, that greater percussiveness
is characterized by both a shorter attack portion in the am-
plitude envelope with a short transient with a wider spectral
distribution. Again the weaker relationships seen in other
envelope controls may have arisen because of the lack of a
specifically temporal prompt descriptor.

3 DISCUSSION

The semantic correspondences of a wide variety of
sounds, produced through FM synthesis, were explored us-

ing a novel experimental paradigm based on a prompted
synthesis task. Experienced sound designers both created
sounds in response to prompts and provided semantic rat-
ings on the sounds they produced. These responses were
studied by constructing a semantic timbre space using ex-
ploratory factor analysis, and a correlation analysis was
performed with the principal components of a set of acous-
tic features. Finally the influence of semantic prompts on
the sound design process was examined by fitting linear
models to synthesizer parameter changes.

The five-factor semantic space for FM sounds identi-
fied by the analysis in the previous section showed strong
loadings for timbral descriptions associated with the LTM
dimensions observed previously for acoustic and electroa-
coustic instrument tones [26, 7] but also exhibited a distinct
structure in response to the specificities of FM signals. The
recurrence of LTM-like factors in this and previous stud-
ies indicates that these concepts may generalize well across
timbral domains, while the occurrence of more highly spec-
ified factors suggests that these concepts alone do not form
a complete timbre semantic model. In interpreting these
results, it is crucial to be mindful that these observations
cannot be assumed to generalize beyond the timbral domain
of the experimental FM synthesizer. Continued inquiry into
the full diversity of electronic sound is needed to understand
the extent to which the findings are because of specificities
of FM synthesis.

3.1 Implications for the Perception and
Semantic Processing of Timbre

The first factor, which was labeled sharpness, showed
strong loadings for both luminance-related and texture-
related words, although less so for rough and smooth, sug-
gesting it may represent an amalgam of attributes relating
to these two semantic dimensions. It has been suggested
that a sharp timbre is one that is both bright and rough
[53]. The acoustic principal component correlates of F1
were the strongest seen across all five factors, suggesting it
may be more closely related than other factors to the main
aspects of acoustic variation in the created sounds. This was
also the case for the musical timbres investigated in [26],
where, albeit separately, the two luminance and texture fac-
tors shared their most significant acoustic correlations.

In the context of FM synthesis, where the introduction
of brightness (in the form of high-frequency energy) is
closely linked to the introduction of inharmonicity through
phase modulation, an entanglement of luminance and tex-
ture may follow naturally. Thus the closer alignment of
these two semantic concepts in this study could be a direct
result of the chosen method of synthesis. The similarities
between the effects of bright and rough prompts on modu-
lator volume and tuning synthesizer controls (Fig. 5) might
further support this interpretation. That is to say, the same
controls were used when participants were asked to mod-
ulate the perceived brightness as when they were asked to
decrease the perceived roughness. However prompts to in-
crease roughness did not result in quite so strong an effect,
suggesting there may exist a degree of independence be-

J. Audio Eng. Soc., Vol. 70, No. 5, 2022 May 383



HAYES ET AL. PAPERS

0.17** 0.01 −0.1* 0.13*

−0.45*** −0.06 −0.07 −0.16**

−0.01 0.13* −0.32*** 0.03

0.29*** 0.11* −0.12* 0.15**

−0.36*** 0.04 0 −0.13*

−0.55*** −0.15** −0.2*** −0.31***

0.25*** −0.02 −0.06 0.08

0.13* 0.21*** 0.31*** 0.16**

−0.43*** −0.07 −0.05 −0.22***

−0.32*** −0.1 0.27*** 0.22*** −0.13* 0.03

0.23*** 0.66*** −0.16** 0.05 0.02 −0.06

−0.28*** −0.38*** 0.08 −0.04 −0.23*** −0.03

−0.51*** −0.55*** 0.21*** 0.05 −0.17** 0.02

0.23*** 0.44*** −0.12* 0.05 0 −0.06

0.34*** 0.44*** −0.3*** −0.08 −0.08 −0.14**

−0.2*** −0.42*** 0.04 −0.12* −0.03 0.01

−0.33*** 0.06 0.15** 0.17** 0.11* 0.14**

0.58*** 0.6*** −0.23*** −0.03 0 −0.12*

−0.26*** −0.11* 0.23*** 0.25*** −0.11* 0

0.31*** 0.59*** −0.19*** −0.05 0.12* 0.02

−0.25*** −0.36*** 0.04 0.04 −0.24*** 0.03

−0.52*** −0.52*** 0.25*** 0.12* −0.21*** 0.02

0.31*** 0.42*** −0.2*** 0.12* 0.03 −0.03

0.37*** 0.41*** −0.4*** −0.09 −0.06 −0.09

−0.23*** −0.38*** 0.09 −0.16** −0.1 0

−0.17** 0.02 0.19*** 0.14** 0.15** 0.09

0.6*** 0.55*** −0.26*** −0.02 0.06 −0.05

A
coustic

S
em

antic

A1 D1 S1 R1 T2 V2 A2 D2 S2 R2 T3 V3 A3 D3 S3 R3

PC4

PC3

PC2

PC1

F5

F4

F3

F2

F1
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tween brightness and roughness that could not be entirely
captured by the factor model.

Acoustic correlations for the second semantic factor
(mass) were less clear. On the one hand, this might be the
result of the acoustical analysis lacking an audio descriptor
or a set of descriptors that adequately capture the concept
of sound mass. Alternatively it is plausible that a number
of possible combinations of characteristics independently
associate with auditory mass, and the scale and structure of
the dataset has obscured any such individual correlations.
Indeed the two most highly correlated acoustic principal
components (PC1 and PC3) described changes in the shape
and flatness of the spectral distribution over time, which
might suggest that the semantic dimensions of this set of FM
synthesizer sounds are best characterized by modulation of
these spectrotemporal characteristics. Recent work shows
that spectrotemporal modulation representations could ex-
plain a higher amount of the variance in semantic ratings
of sound mass than classical audio descriptors of the type
used here [54].

The third (with strong loadings for clean and clear)
and fifth (with a strong loading for raw) factors described
more nuanced aspects of timbral variation, specific to FM-
synthesized sounds. FM synthesis provides fine-grained
control over the distribution of partials, with the energy
distribution over sidebands governed by Bessel functions
of the modulation index [37]. It is plausible that certain
aspects of variation between FM-synthesized sounds are
pronounced enough to be differentiated by similarly fine-
grained semantic dimensions and may otherwise be less
separable in other contexts. For instance, in the LTM study,
English listeners perceived messy acoustic and electroa-
coustic instrument tones to also be rough and, to a lesser
extent, thick, while scales like clear and dirty were dropped
from the final factor analysis because of high correlation
with other scales [26].

On the other hand, the emergence of a plucky/percussive
dimension (factor F4) in the present study might be inter-
preted from a methodological angle. Interacting with the
synthesizer’s ADSR envelopes may have encouraged par-
ticipants, who also had significant prior sound design ex-
perience, to be particularly sensitive to the temporal shape

of the sounds they actively created, where they might not
be in a conventional passive listening design. Indeed fac-
tors proposed across several such investigations of timbre
semantics, including the LTM study, appear generally un-
able to capture the salient perceptual dimension of timbre
responsible for discriminating between sustained and im-
pulsive sounds [7, 27].

While this factor shows weak to moderate correlations
with some acoustic components, no relationship was ob-
served with the only component (PC2) associated with a
descriptor related to temporal energy (effective duration).
It is possible that, in the context of FM-synthesized sounds,
the attributes insinuated by the terms percussive and plucky
are not well characterized by purely temporal descriptors.
These terms may, for example, be more suggestive of par-
ticular profiles of spectrotemporal evolution. They are also
distinct from other semantic descriptors in both this anal-
ysis and previous work [18, 26] because, instead of being
metaphors for timbral characteristics, they may be directly
suggestive of source-cause categorical cues such as striking
and plucking. Timbrally, these are typically associated with
an instantaneous attack transient, after which the signal en-
ergy decays. It stands to reason then that the inclusion of
percussive and plucky scales might have been sufficient to
elicit discrimination of such timbral characteristics, despite
this not being a principal component of acoustic variation.

3.2 Relationship Between Semantic Factors and
Synthesis Parameters

Significant correlations between the observed semantic
factors and adjustments made by participants to synthesis
parameters were observed (Fig. 6). In order to interpret
these correlations, it is helpful to understand how the pa-
rameters of an FM synthesizer influence the resulting signal
at a high level. Thus the authors propose conceptually di-
viding the parameters of the synthesizer into the following
four groups, based on their effects:

1. Amplitude temporal evolution: carrier attack (A1),
decay (D1), sustain (S1), and release (R1).

2. Spacing between sideband frequencies: modulator
tuning (T2 and T3).
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3. Sideband energy distribution: modulator volume
(V2 and V3).

4. Sideband energy temporal evolution: modulator at-
tack (A2 and A3), decay (D2 and D3), sustain (S2
and S3), and release (R2 and R3).

With these groupings in mind, analyzing the pattern
of correlations seen for each factor becomes a simpler
task. Increasing “sharpness” (F1) appears, for example, to
be associated with (1) faster amplitude envelopes (↓A1
and ↓R1), (2) wider spacing between sidebands (↑T2 and
↑T3), (3) more energy distributed to sidebands (↑V2 and
↑V3), and (4) a shorter sideband energy envelope (↓A2 and
↓A3). Conversely increasing “mass” (F2) suggests parame-
ter changes that cause (1) slower amplitude envelopes with
more sustain (↑D1, ↑S1, and ↑R1), (2) narrower spacing
between sidebands (↓T2 and ↓T3), (3) no change to side-
band energy distribution, and (4) slower sideband energy
envelopes with more sustain (↑A2, ↑D2, ↑R2, ↑A3, ↑D3,
and ↑S3).

Through this lens, the semantic factor/synthesis-
parameter relationships are somewhat intuitive. Percussive-
ness (F4) is mostly associated, for example, with shorter en-
velopes and more energy in sidebands, which is consistent
with previous definitions of “percussive” semantic dimen-
sions [27]. However many of the semantic factor/synthesis-
parameter correlations are statistically significant but ex-
hibit only a small correlation, which is congruent with
the high variance also seen in parameter changes per
prompt. This suggests that, as with the prompt-parameter
relationships, the distribution of semantic factor/synthesis-
parameter relationships is highly varied and exhibits nu-
ances likely resulting from the specifics of FM synthesis
discussed in the following section.

3.3 Influence of Task Constraints and Pitch
Register

More generally the hands-on synthesis component of the
present experiment may have resulted in heightened sen-
sitivity to certain timbral cues, such as those captured by
factors 3–5. These, although commonly shared across many
types of sounds, may be more difficult to perceptually dis-
entangle in complex natural versus simple synthetic sounds
(see, for example, [55]). As such, the latter may have in-
vited for subtler semantic associations. Reusing previously
created sounds as reference stimuli for each trial may have
also contributed to the prominence of timbral subtleties in
the factor space. Given the greater diversity of stimuli in-
cluded in the analysis, it is reasonable to assume that a
wider diversity of sonic characteristics were represented.
However, because each stimulus pair was rated only once,
it is not possible to quantify inter-rater agreement on the
presence or distribution of these characteristics. It would
therefore be beneficial, in future work, to collect semantic
ratings from multiple participants on a shared set of stimuli
similar to those used in this study.

Another methodological choice that might have driven
the finer-grained factor solution is the use of pairwise com-

parative ratings, which are generally considered to not limit
the dimensionality that can be recovered [55]. Because par-
ticipants rated semantic scales based on the dissimilarity
between a reference sound and the one they created, one
stimulus pair at a time, differentiating timbral subtleties that
may be obscured in an absolute rating paradigm might have
been enabled (although see [56]). Further work collecting
absolute semantic ratings on the same stimuli would be
necessary to confirm this.

The comparative nature of the semantic ratings might
also explain the lack of any significant relationship between
stimulus F0 and the five semantic factors in the present data.
At first this finding would appear at odds with previous
reports both when F0/pitch is examined directly [41, 42] and
when it is considered as an additional variable [26]. In the
LTM space, for instance, F0 was found strongly correlated
with the mass dimension, with lower-pitched sounds rated
as thicker and more dense (cf. [57]). It is possible that the
use of comparative versus absolute rating scales effectively
controlled for any F0 effects. Another plausible explanation
is that the specific characteristics of FM synthesis may have
perceptually obscured the true F0 of some sounds. That is,
the introduction of sidebands both above and below the
oscillating frequency of the carrier operator might have
falsely implied a lower or higher pitch [58].

The architecture of the FM synthesizer used by partic-
ipants may have limited the power of the linear models
presented in Sec. 2.3 to accurately predict the influence of
semantic prompts on parameter changes. In particular the
symmetry of the modulation routing means that swapping
the parameter values of operators 2 and 3 would result in an
identical sound being produced. This is reflected in the sim-
ilarity of the linear effects (Fig. 5) between the parameters
of both modulators and may have weakened the statistical
relationships between modulator parameters and semantic
descriptors.

There also exist degenerate regions in the synthesis-
parameter space, such as when the amplitude of a mod-
ulating operator is zero. In these cases, none of the parame-
ters of the modulator in question contribute to the resulting
audio signal, although still influencing the statistical anal-
ysis. Future applications of this paradigm, therefore, would
benefit from either an asymmetric synthesis architecture or
an analysis that accounts for parameter redundancies and
degeneracies. Further experimentation with a linear syn-
thesis method, such as additive synthesis, would also help
understand to what extent these results derive from the non-
linearity and complexity of FM synthesis.

Furthermore a given semantic prompt may not map
uniquely to a single point in the synthesizer’s parameter
space as per the instructed task. This is because of both
the previously discussed symmetry of the synthesizer and
the fact that the synthesizer’s parameters may not map di-
rectly onto the semantic dimensions under test. For ex-
ample, it is plausible that the neighborhood surrounding a
“bright” sound in the parameter space also consists largely
of “bright” sounds. It is also conceivable that there may ex-
ist several disjoint neighborhoods in parameter space that
satisfy a “bright” timbre. As such, the collected data may
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represent an incomplete picture of a listener’s belief about
the distributions of semantic descriptors across the synthe-
sizer’s parameter space because they provide only point
estimates. Further research aiming to map these distribu-
tions across the ranges of parameters would therefore be
valuable.

3.4 Influence of Word Affect on
Timbre-Semantic Associations

In the prompted synthesis study of Wallmark et al. [40],
affective connotations of the adjective prompts (based on
validated affect norms [59]) were found to exert an in-
fluence over the acoustic properties of the created sound.
Words with positive or negative valence were observed to
result in higher scores on an acoustic component associated
with spectral centroid and noisiness. Words with neutral va-
lence, conversely, were associated with lower scores on this
component.

Largely similar trends were observed for the FM sounds
created in response to the three prompts used in the present
study, which respectively have positive valence (bright),
neutral valence (thick), and negative valence (rough) [59].
Specifically the patterns of linear effects in Fig. 5 indicate
that the largest effects for brighter, less bright, and less
rough were on the tuning and volume controls of the two
modulators, albeit with some inconsistency between pitch
registers; thicker and less thick showed overall weaker linear
effects for the same controls. These controls were strongly
associated with both spectral centroid (PC1) and noisiness
(PC3; Table 4 and Fig. 6). While a systematic examina-
tion of the acoustical impact of word affect remains beyond
the scope of this paper, the present data provide additional
preliminary evidence of affective mediation in timbre se-
mantics.

3.5 Toward Perceptually Informed Sound Design
and Synthesis

As observed in the present study and in previous work
[8], the controls of existing synthesizers generally do not
provide a clear mapping onto timbral concepts. Broadly
speaking, they instead map onto specifics of the underly-
ing synthesis method requiring musicians and sound de-
signers to acquire some level of signal processing knowl-
edge in order to make principled decisions. Even with this
knowledge, achieving conceptually simple alterations of-
ten requires manipulation of multiple parameters, often in
a counter-intuitive manner governed by their subtle interde-
pendence. This issue is further compounded by the growing
complexity of commercial hardware and software synthe-
sizers.

Wessel [9] first suggested the use of a timbre dissimilar-
ity space, constructed using multidimensional scaling, as
a control space for a synthesizer. The proposed approach
used an additive synthesis engine whose envelope param-
eters were mapped linearly to the dimensions of the tim-
bre space. Such a simple mapping was likely facilitated
by the linearity of additive synthesis, where the signal is
constructed as a time-varying weighted sum of a set of ba-

sis functions. FM synthesis, conversely, constructs a signal
from synthesis parameters nonlinearly, and many controls
are thus arguably “perceptually nonlinear.” For example,
monotonically increasing a modulator’s frequency parame-
ter over time would result in a signal that oscillates between
harmonic structure and total inharmonicity. Thus simple
timbre space mappings to FM parameters can be more chal-
lenging to derive [60, 61]. Furthermore mapping synthesis
parameters to a semantic timbre space introduces yet an-
other layer of complexity because, while timbre-semantic
dimensions are assumed to relate to an underlying percep-
tual representation, the nature of this relationship is not
clear for all dimensions [18, 62].

As research in neural audio synthesis [63] extends the ca-
pabilities of synthesizers beyond the limitations of familiar
techniques, a further set of challenges related to synthesis
control warrants consideration. It is now already feasible to
create convincing digital recreations of the sounds of phys-
ical musical instruments without the need for sample play-
back or physical modeling [64], transfer the timbre of one
instrument to another [65], perform perceptually smooth
“morphs” between timbres [10], and more. Recent work
[66] has enabled many of these techniques to be achieved
comfortably in real time on consumer central processing
units, allowing the capabilities of neural audio synthesis to
be integrated into tools for musicians and sound design-
ers. Yet affording useful timbral control over these tools
remains an unsolved problem. Their range of potential out-
puts is huge, yet their internal representations of timbral
characteristics are typically learned directly from training
data and are frequently uninterpretable by humans.

Yet, without a complete understanding of how synthetic
sounds are perceived, which characteristics are most per-
ceptually salient, how this perception maps onto compre-
hensible descriptions, and how these descriptions guide the
sounds design process, such work is unlikely to produce
controls of practical utility to those hoping to exploit the
vast sonic potential of these new synthesizers in their cre-
ative work. Previous work has focused on addressing this
problem in the context of audio engineering and music
production by studying the relationships between semantic
descriptors of timbre and the application of audio effects
including equalization, compression, reverb [34], distortion
[35], and bit-depth reduction [67]. Progress on this problem
for audio synthesis will require interdisciplinary collabora-
tion across the fields of psychoacoustics, deep learning, and
human-computer interaction. To this end, this work is ac-
companied by a fully annotated dataset of sounds produced
in the study, with complete semantic ratings and factor load-
ings. This is intended as a first step toward sharing insights
across these fields in a manner that will facilitate progress
on this problem.

4 CONCLUSION

This study investigated the semantic associations of dis-
embodied electronic timbres—specifically those produced
by a three-operator FM synthesizer. A novel experimental
paradigm was applied in which participants directly syn-
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thesized sounds in response to semantic prompts linked to
the dimensions of the LTM model of timbre semantics. An
exploratory factor analysis of comparative semantic ratings
collected between pairs of synthesized sounds recovered a
five-factor semantic space. To identify the acoustic under-
pinnings of the resulting factors, a correlation analysis was
performed with the principal components of a comprehen-
sive set of acoustic features. Linear regression models were
also fit to examine the effects of semantic prompts on the
use of synthesizer controls.

Semantic factors corresponding to luminance, texture,
and mass were present in this model, but luminance and
texture were combined. Acoustic correlates of luminance
and texture similar to those observed in previous work [26]
were found, but no acoustic correlates could be directly
identified for mass. Three additional factors were observed
with no obvious parallel in the LTM model. These showed
strong loadings for clear/clean, percussive/plucky, and raw,
respectively. No influence of fundamental frequency on the
ratings of semantic descriptors was observed, likely be-
cause of their comparative nature. All three comparative
LTM prompts exerted significant influence on the manip-
ulation of synthesizer controls. The prompts brighter, less
bright, and less rough in particular were very significantly
associated with changes to parameters directly controlling
the FM modulation index. Future work aiming to ascertain
the nature of this model’s three novel dimensions would be
valuable. The application of classical timbre dissimilarity
and semantics paradigms to sounds generated in this study
would also facilitate interpretation of these results in the
broader context of timbre research.
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A.1 TOP 50 TIMBRE DESCRIPTIONS

The 50 most frequently used timbral adjectives collected
from a popular modular synthesis forum according to the
procedure described in SEC. 1.2.

A.2 DESCRIPTOR PRUNING CRITERIA

1. Remove words referring to affect (e.g., good).
2. Remove words referring to specific synthesizers or

hardware (e.g., moogy).
3. Keep only one element of any group of words sharing

a stem, favoring the word with the highest corpus
frequency (e.g., wooden and woody).

4. Remove words more commonly used to describe
pitch than timbre (e.g., high).

5. Remove words describing loudness (e.g., loud).
6. Remove words describing duration (e.g., short or

long).
7. Keep only one element of any group of obvious syn-

onyms (e.g., brilliant and bright).

A.3 EXPLANATION OF COMPARATIVE FACTOR
MODEL

Let X be the full matrix of unobserved absolute semantic
ratings. Let Xc and Xr be matrices such that the sets of rows
of Xc and Xr are overlapping subsets of the set of rows of X,
with Xc containing ratings of sounds created by participants
and Xr containing ratings of the reference sounds.

The theoretical factor model X = LF + M + ε, where F
is the matrix of factor scores for each observation and each
column of matrix M contains the mean of the corresponding
column of X and then gives the overall loading matrix L with
which models for Xc and Xr, Xc = LFc + Mc + εc and Xr =
LFr + Mr + εr, can be specified. This loading matrix thus
also applies to the model of observed comparative ratings:

Xdi f f = Xc − Xr + εdi f f

= L(Fc − Fr ) + Mc − Mr + εc − εr + εdi f f

= L Fdi f f + Mdi f f + ε.

Again, by linearity, the difference in the column means
(Mc and Mr) of Xc and Xr is equal to the column mean
of the element-wise differences between Xc and Xr, giving
Mdiff . The respective error terms (εc and εr) of these implicit
absolute models are, on account of their normality, simply
subsumed into the error term of the observed comparative
model as a sum of normally distributed random variables.

Table 6.

Description Bigram Occ. Corpus Occ.

1 Great 12,637 128,040
2 Good 6,158 142,535
3 Nice 3,584 92,787
4 Different 3,271 80,763
5 Awesome 1,896 32,652
6 Cool 1,734 54,245
7 Amazing 1,571 20,479
8 Interesting 1,415 40,124
9 Fantastic 1,286 9,598
10 Synth 1,222 60,582
11 Percussive 1,217 3,482
12 Pretty 1,093 75,287
13 Similar 1089 29,786
14 New 887 88,297
15 Unique 848 8,253
16 Beautiful 692 9,237
17 Digital 678 30,144
18 Clean 670 12,526
19 Complex 573 15,652
20 Incredible 555 4,106
21 Modular 552 118,712
22 FM 540 27,389
23 Wonderful 536 6,525
24 Overall 516 5,425
25 Right 491 77,903
26 Bad 487 23,048
27 Weird 446 12,432
28 Excellent 446 11,666
29 Drum 437 41,217
30 Organic 419 2,383
31 Sweet 409 8,992
32 Crazy 408 11,627
33 Raw 385 3,557
34 External 372 22,864
35 Natural 364 2,684
36 Fine 362 32,489
37 Basic 352 19,560
38 Classic 345 8,470
39 Original 330 23,436
40 Electronic 323 9,695
41 Much 322 120,812
42 Many 315 56,465
43 Huge 307 11,131
44 Rich 302 3,003
45 Big 300 34,466
46 Metallic 297 1,268
47 Musical 296 9,838
48 Specific 293 12,207
49 Decent 288 9,692
50 Certain 279 11,501
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