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Audio signals are classified into speech, music, and environmental sounds. From the evo-
lution of audio features, an adequate amount of work has been seen in speech and music
processing. On the other hand, the environmental sounds have not been studied that much, and
the major reason behind it is the lack of coherent information present in an environmental sound
compared with the speech signal or a musical sound. The definition to express audio textures
is imprecise and insufficient, so audio textures tend to be defined by drawing a comparison
to the known sound source (e.g., “it sounds like a motor” or “like a fan”). Audio textures
could be either natural or artificial. Natural audio textures, such as heavy rain, fire, and stream
flowing, are very common. The artificial audio textures include sounds such as applause, a
motor running, someone walking on gravel, babble, and many more. Although these audio
textures have been used in virtual reality, music, screen saver sounds, and more, a considerable
amount of possible work is still untouched. The aim of this study is to summarize the literature
on audio textures, textural features, and their applications. In this survey, the texture synthesis
and features are explained in detail.

0 INTRODUCTION

Humans have an extremely fine sense to feel, classify,
and analyze various things. The modern machine learning
and deep learning models try to mimic that fine sense of
humans in order to design smart machines. Texture is one of
the things that humans can classify very well. For example,
one can easily classify texture of the surface as smooth or
rough just by touching it. Similarly, just by viewing, one
can classify the texture of an image as coarse or smooth,
uniform or non-uniform, symmetric or non-symmetric, nat-
ural or artificial, etc., and in the same way, humans have a
capability of classifying and analyzing textures present in
the audio signals.

Audio textures are present everywhere in the environ-
ment, but they are largely not studied. The major reason
behind not studying audio texture is that, unlike speech and
music, there is no coherent information or organized mes-
sage present in the audio texture [1]. But in the last few
decades, textures have been widely used in background
sounds in movies, augmented reality, virtual reality, mobile
applications, screen saver sounds, music, lullabies, audio

texture synthesis, and many more [2]. As the knowledge
about audio texture grows, the more and more applications
are coming up. Currently audio textures are being used
in rejuvenation therapies where long duration calm audio
textures like ocean waves, forest rain, etc. are played to
release stress and tension from one’s brain and body. There
are many mobile applications that help people sleep, get
calm, and feel relaxed by using audio textures [3].

The most common textures in the environment include
rainfall, wind blowing, cricket sounds, frog calls, a running
tap, and many more. Despite having such a close connec-
tion with these audio textures, it is quite difficult to explain
them in words unless it is heard. This explanation of tex-
tures is not precise and hence quite vague in nature (e.g.,
an audio sounds like wind, a machine running, etc.). For
machine learning, audio textures are either captured from
the audio itself or its corresponding time-frequency repre-
sentation (TFR) such as a spectrogram. Fig. 1 shows the
time-domain and corresponding spectrograms for a speech
signal and audio texture. It can be interpreted from the time
domain representation that audio textures have a uniform
pattern compared with the speech signal. In the case of
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Fig. 1. Time domain and time-frequency representations for a speech signal and audio texture.

a speech spectrogram, the formants are somewhat visible.
The frequency spread is concentrated at the lower end in
this case. While on the other side, for audio textures, the
spectrograms are pretty much uniform throughout the fre-
quency axis, and no formants are clearly visible.

The broad categories into which audio textures could be
grouped are natural audio textures (e.g., rain and wind), an-
imal/bird audio textures (e.g., crickets humming, seagull,
and frog calls), audio from activity (e.g., running on gravel,
typing, and applauding), machine audio textures (e.g., air
conditioner, lathe, and grinder), and human utterances (e.g.,
sounds in a restaurant, babble, and crowd noise). Sounds
from musical instruments (e.g., bongo and guitar) are not
considered textures because these sounds are rich in har-
monic content.

This review paper discusses the trends of audio texture
analysis methods, synthesis algorithms, and their various
applications. The definitions of audio textures given by var-
ious researchers throughout the evolution of audio textures
are reported. This paper summarizes the evolution history
of audio textures and discusses each of its phases in detail.
This work summarizes all the relevant literature on audio
texture analysis and synthesis algorithms.

The rest of the paper is organized as follows. Sec. 1 dis-
cusses the audio texture definitions. Sec. 2 explains audio
texture analysis methods including statistical, image-based,
and timbre-based features. Sec. 3 describes the synthesis
methods for audio textures in detail including the modular,
granular, and deep learning–based methods. Sec. 4 high-
lights some of the application areas where audio textures
are used, and the last section summarizes this survey article.

1 AUDIO TEXTURE DEFINITIONS

Various researchers have given various definitions to ex-
plain the textures. The earliest attempt to explain texture
was in the context of visual textures and was proposed in

Fig. 2. Potential information in audio textures [1].

1962 by Julesz [4]. In this article, the author proposed a
theory called “Julesz’s conjecture” and stated that humans
are not able to distinguish between visual textures if they
have similar second-order statistics (i.e., variance of the
image). However this theory was later proved false in [5].
Since then image or visual textures have been studied and
explored deeply in various applications [6].

On the other side, the earliest attempt to explain audio
textures was done by Nicholas Saint-Arnaud in 1995 [1].
In this the authors have given the following definition to
the audio textures: “Sound textures are formed by the basic
sound elements called atoms; atoms occur as per a high
level pattern which could be periodic or random; the high
level parameters must remain same over a long period of
time; the parameters must be exposed within few seconds
and high level randomness is acceptable as long as enough
occurrences are present with in the attention span.”

Also in [1] the relation between potential information is
established with speech and music, texture, and noise. The
relation is shown in Fig. 2. The relations explains that the
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Table 1. Summary of the texture definitions based on initial
work.

Year Citation Texture Texture property

1962 [4] Visual Julesz conjecture
1978 [5] Visual Improved Julesz conjecture
1995 [1] Audio Sound has audio atoms
1998 [7] Audio Audio as two-level representation

information content present in the sound textures is more
than the noise but way less than the speech or music signals.

Later in 1998 the audio texture synthesis was proposed
for the first time by Saint-Arnaud and Popat in [7]. In this
the audio textures were defined as a two-level representa-
tion, where the first level states that textures are made of
atoms and second level explains all the probability-based
transitions between atoms. The atom in the audio texture is
the smallest unit present in the texture sound, for example,
a fire crackle in a fire texture sound or raindrop in a rain
texture sound. In [7] the authors proposed that there could
be more than one atom present in an audio texture. During
the synthesis of audio textures, the authors found it very
difficult to separate and categorize the atoms from the tex-
ture sound [7]. Table 1 summaries the definitions provided
for textures during initial works. The visual textures were
defined well before audio textures.

2 AUDIO TEXTURE ANALYSIS

Plenty of work has been done in the field of audio sig-
nal processing using the various types of audio features,
such as based on time domain, frequency domain, cepstral
domain, textural features, and more [8]. These features are
normally frame-level features, which means the audio clip
is divided into frames, and features are extracted from each
frame. There are direct and indirect methods to capture
the temporal structure of an audio from its time-frequency
representations. In recent classification algorithms, these
frame-level features are integrated before being fed into the
classifier. This method is called temporal feature integration
(TFI) [9], and the frames from which these temporal fea-
tures are extracted are called texture windows [10, 11]. This
integration method reduces the within-class variability and
hence improves the performance of the classifier. Textural
features are actually those handcrafted features that define
the texture present in an audio. In literature, the textural
features are classified into the following classes: statisti-
cal, image-based, and timbre-based features. This section
explores all these textural features.

2.1 Statistical Features
The statistical texture features are easy to extract and un-

derstand. The first four statistical parameters (mean, vari-
ance, skewness, and kurtosis) have been generally used
in many classification applications, but extracting these
parameters directly from the audio clip does not give a
considerable amount of information because of the basic
homogeneous nature of the audio textures. Hence these sta-

Algorithm 1. Conditional spectral moments.

1. Result: conditional spectral moments.
2. Initialization: mono-channel audio signal xi(t).
3. Find P(t, ω), the spectrogram of xi(t).
4. Choose the value of moment m between 1 and 4.
5. Calculate marginal distribution P(t) of xi(t).
6. Calculate the conditional spectral moment using Eq. (1).

tistical parameters are extracted from other audio domains
[12, 13]. The most explored statistical moments are from
conditional domains, temporal correlations, spectral cor-
relations, tempo-spectral correlation, mean instantaneous
frequency [14], and mean crossing rate.

2.1.1 Conditional Moments
The moments first include fourth-order statistical param-

eters called mean, variance, skewness, and kurtosis. Mean
describes the average, variance shows the spread range,
skewness reflects the symmetry in the histogram, and kur-
tosis shows the sparsity present in the data [13, 15]. When
analyzing statistics from the TFR, standard statistical mo-
ments do not make much sense. The conditional moments
are calculated by keeping one parameter constant, either
time or frequency. Such conditional moments are called
conditional spectral moments, conditional temporal mo-
ments, and the joint time-frequency moment [16]. These
conditional moments are currently being used in detecting
faults in machines, bearings, or gears [17, 18]. The sounds
produced by these motors could be considered audio tex-
tures.

2.1.1.1 Conditional spectral moments. The condi-
tional spectral moments of a signal describe how the signal
spectrum is evolving in time. The moments of the sub-bands
histogram help to distinguish between sound textures that
have fairly steady power (e.g., in classic filtered noise)
in sub-bands versus the sub-bands having few, large, and
sparse values (e.g., crackling fire). Mathematically condi-
tional spectral moment is a function of frequency, given
time and its marginal distribution. Assume there is a signal
xi(t) and its spectrogram power spectrum is P(t, ω). For N
number of sub-bands, the conditional spectral moment [19]
is α when t is given and is described as

[αm |t] = 1

P(t)

N∑
ω=0

ωm P(t,ω), (1)

where m is the order of the moment and P(t) is the marginal
distribution. For m = 1, it is the conditional spectral mean;
if m = 2, it is conditional spectral variance; for m = 3,
it is the conditional spectral skewness; and for m = 4,
it is conditional spectral kurtosis. Higher-order moments
could also be calculated by choosing a higher value of
m. Algorithm 1 explains the steps to calculate conditional
spectral moments.

2.1.1.2 Conditional temporal moments. The condi-
tional temporal moment of an audio signal describes how
group delay is evolving in time. The marginal temporal
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Algorithm 2. Conditional temporal moments.

1. Result: conditional temporal moments.
2. Initialization: mono-channel audio signal xi(t).
3. Find P(t, ω), the spectrogram of xi(t).
4. Choose the value of moment n between 1 and 4.
5. Calculate marginal distribution P(ω) of xi(t).
6. Calculate the conditional temporal moment using Eq. (2).

Algorithm 3. Joint time-frequency moments.

1. Result: joint time-frequency moments.
2. Initialization: mono-channel audio signal xi(t).
3. Find P(t, ω), the spectrogram of xi(t).
4. Choose the value of moment m and n between 1 and 4.
5. Calculate the joint time-frequency moment using Eq. (3).

moments, such as variance and kurtosis, help to distinguish
between the amount of textures present in the audio. A high-
textural audio has a symmetric histogram of these moments
compared with the low-textural audio. Just like conditional
spectral moments, the conditional temporal moment is also
a function of frequency, time, and marginal distribution.
The β is the conditional temporal moment when ω is given,
M is the number of samples/time length, and the condi-
tional temporal moment is described in Eq. (2). Algorithm
2 explains steps to calculate conditional temporal moments.

[βn|ω] = 1

P(ω)

M∑
t=0

tn P(t,ω), (2)

2.1.1.3 Joint time-frequency moments. The joint time-
frequency moments are related to the conditional spectral
and temporal moments. It is a function of frequency, time,
and marginal distribution. The joint time-frequency mo-
ment is defined below as

βnαm =
M∑

t=0

N∑
ω=0

tnωm P(t,ω), (3)

Here n, m represent the order of the temporal and spec-
tral moment. For example for joint time-frequency mean
order of the system should be [1,1]. Similarly for joint
time-frequency variance, skewness, and kurtosis, the order
should be [2, 2], [3, 3], and [4,4] respectively. Algorithm
3 explains the steps to calculate the joint time-frequency
moments.

2.1.2 Temporal Correlation
In few audio textural sounds, there is a temporal pat-

tern present within the sounds. For example frog calls,
cricket sounds, etc. have some kind of temporal structures.
The temporal structure helps to capture the characteristic
rhythm and smoothness from an audio texture. For exam-
ple it captures the difference between fast/rough clapping
and smooth/slow sea-wash. These temporal structures could
also be analyzed from a TFR, such as a spectrogram [20]. In
the spectrogram, the correlation among time axes is called

Algorithm 4. Auto-correlation of signal xi(t).

1. Result: auto-correlation of signal xi(t).
2. Initialization: mono-channel audio signal xi(t).
3. Consider τ as lag.
4. Calculate auto-correlation using Eq. (4) or Eq. (5).

Algorithm 5. Spectral correlation between sub-bands.

1. Result: spectral correlation.
2. Initialization: mono-channel audio signal xi(t).
3. Consider two sub-bands: ωa(t) and ωb(t).
4. Calculate spectral correlation using Eq. (6).

temporal correlation. This gives an idea how the signal
present in a small window is related to the other signal
present in some other window. An auto-correlation func-
tion Rxx reflects the temporal correlation and is explained
in Eq. (4) for the continuous signal xi(t). Eq. (5) shows the
auto-correlation for the discrete signal xi(n). The early work
of McDermott [12] includes the auto-correlation function,
but later in [15] this parameter was dropped. Algorithm 4
explains the steps to calculate temporal correlation by the
auto-correlation function.

Rxx (τ) =
∫ ∞

−∞
xi (t)xi (t − τ), (4)

Rxx (l) =
∑

xi (n)xi (n − l). (5)

2.1.3 Spectral Correlation
Spectral correlation is also known as cross-band corre-

lation. This feature helps to identify sub-bands that ex-
hibit synchronized energy maxima (e.g., crackling fire and
speech), distinct from the independent variations in each
band (e.g., water sounds). By analyzing the spectral cor-
relation between the sub-bands, the more correlated sub-
bands can be identified, and this could help in classification
applications [20]. The spectral correlation is an important
work in [12, 13, 15, 21]. Spectral correlation is the correla-
tion between various frequency sub-bands in the TFR. The
spectral correlation is defined by Eq. (6), where ωa and ωb

are the two sub-bands. Algorithm 5 explains the spectral
correlation in detail.

Cωa ,ωb =
∞∑

t=−∞
ωa(t)ω̄b(t). (6)

2.1.4 Spectro-Temporal Correlation
The temporal correlation characterizes the horizontal re-

lationship in TFR, and on the other side, the spectral corre-
lation defines the vertical relationship in TFR [22]. There
are also spectro-temporal structures present in TFR. This
slant relationship involves correlations in both time and
frequency. This statistical parameter can describe those fre-
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Algorithm 6. Spectro-temporal correlation by cross-correlation
function.

1. Result: spectro-temporal correlation.
2. Initialization: mono-channel audio signal xi(t).
3. Choose a delay τ.
4. Calculate spectro-temporal correlation using Eq. (7).

Algorithm 7. Mean instantaneous frequency.

1. Result: mean instantaneous frequency of a signal.
2. Initialization: mono-channel audio signal xi(t).
3. Consider φ(t) as unwrapped instantaneous phase of the signal
xi(t) at any time t.
4. Calculate instantaneous frequency using Eq. (8).

Algorithm 8. Local binary pattern (LBP) from spectrogram.

1. Result: LBP feature vector.
2. Initialization: mono-channel audio signal xi(t).
3. Generate spectrogram image from the audio signal, and
convert it into its gray-scale equivalent.
4. Choose the radius of the mask and type of normalization.
5. Extract LBP features from the gray-scale spectrogram image.

quencies, which appear in the audio textures after a time
delay (e.g., chirps and vibrating whispers). This parameter
shows the correlation between various time and frequency
bands. It could be understood as a spectral correlation with
time delay. In TFR it is characterized by the delayed cross-
correlation. The tempo-spectral correlation is shown by Eq.
(7). Algorithm 6 describes the spectro-temporal correlation
in detail.

Cωa ,ωb (τ) =
∞∑

t=−∞
ωa(t)ω̄b(t + τ). (7)

2.1.5 Mean Instantaneous Frequency
The instantaneous frequency is also known as time-

dependent frequency. Instantaneous frequency is a key pa-
rameter to distinguish bird calls, since most bird calls have
ascending instantaneous frequency. The instantaneous fre-
quency is the first derivative of the instantaneous phase and
is calculated from each frequency sub-band generated by a
TFR. Calculating the mean of that instantaneous frequency
could help in classifying various audio textures. The instan-
taneous frequency is defined as

ω(t) = dφ(t)

dt
, (8)

where φ(t) is an unwrapped instantaneous phase angle.

2.1.6 Mean Crossing Rate
Similar to zero crossing rate (ZCR), the mean crossing

rate (MCR) feature estimates the alternations of succes-

sive feature values inside a texture window [11]. The mean
crossing rate is defined as

MC R = 1

N − 1

k−1∑
m=k−N+1

hi [m] − hi [m − 1]

2
, (9)

where

hi [m] = sgn(xi [m] − xi [m]). (10)

2.2 Image-Based Features
Image-based audio textural features are actually bor-

rowed from the image-processing techniques. The audio
signals are converted into an appropriate TFR, such as a
spectrogram, and this TFR is considered an audio’s im-
age. The most used image-based features are local binary
patterns, local ternary patterns, Histogram of Oriented gra-
dients, and Haralick’s features.

2.2.1 Local binary patterns (LBPs):
LBP is one of the most explored image texture features

[23]. The LBP is primarily used in applications such as
face recognition, face detection, and object detection. Now
when audio TFRs are considered as an image, this LBP
also becomes a part of an audio textural feature set [24].
In [25] LBP is used to classify sound effects by capturing
the textural information from a spectrogram. In this work,
authors also validate that a logarithm of the Gammatone-
like spectrogram provides richer texture information than
other spectrograms. The LBP measures the local spatial
information and gray-scale contrast from the TFRs. The
LBP tries to find the local uniform patterns present in an
audio texture TFR. LBP performs thresholding and converts
pixels into binary units 0 and 1. The thresholding is based
on the Eq. (11).{

1, p > c
0, p < c

, (11)

Here c is the center pixel, and p is the neighboring pixel.
It converts the pixel intensities present in a circular neigh-
borhood into a binary pattern. The LBP is a 59-dimensional
feature that contains 58 uniform patterns and one non-
uniform pattern present in the audio TFR. There are several
modified and improved versions of LBP present that are
employed in image-processing applications [26]. The LBP
is used in audio scene classification, snore analysis, emo-
tion detection [27, 28], and analysis of pathological speech
[29]. Algorithm 8 describes the extraction of LBP from the
spectrogram images.

2.2.2 Local ternary patterns (LTPs):
LTP is a modified version of LBP, where the thresholding

results in the three levels (1, 0, and –1) rather than two levels,
which are 0 and 1 in the case of LBP. The thresholding in
the case of LTP is defined in Eq. (12) below:⎧⎨

⎩
1, p > c + k
0, p > c − k, p < c + k
−1, p < c − k

, (12)
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Fig. 3. Local binary patterns (LBPs) and local ternary patterns (LTPs).

Algorithm 9. Local ternary pattern (LTP) extraction.

1. Result: local ternary patterns.
2. Initialization: mono-channel audio signal xi(t).
3. Generate spectrogram from the audio signal xi(t), and convert
it into its gray-scale equivalent image.
4. Choose the size of image mask and find the upper and lower
bits using ternary function and threshold values –1, 0, and 1.
5. Calculate upper and lower values using upper and lower bits.
6. Construct upper and lower signals.
7. Generate histogram from these signals.
8. Join the histograms to get LTPs.

Fig. 3 shows the difference between LBP and LTP. The
steps to calculate LTP are explained in Algorithm 9.

2.2.3 Histogram of oriented gradients (HOGs):
HOG is a feature descriptor initially explored for detec-

tion in the human body [30]. The HOG has been widely
used in image-processing–based medical applications [31].
It describes the local appearance and shape of an object
using the distribution of intensity gradients or edge direc-
tions. The extraction process of HOG is as follows. First 1D
derivative masks (i.e., [1, 0, 1] and [1, 0, 1]T ) are applied to
each pixel value in both the horizontal and vertical direc-
tion respectively. Then the orientation and magnitude of a
gradient are computed with both of the gradients. The ori-
entations are normalized to several bins, which are equally
spaced in the range of 0 to 360 degrees. Finally the HOG
is obtained by summing the magnitude of the orientations
over the whole range of the spectrogram image. HOG is
widely used in audio scene classification [32–34], vehicle
detection [35], and emotion detection [36].

2.2.4 Haralick’s features:
Haralick’s features are a set of 14 features that describe

the correlation between the intensity of a pixel to the adja-

Algorithm 10. Histogram of oriented gradient (HOG) feature
extraction.

1. Result: HOG feature set.
2. Initialization: mono-channel audio signal xi(t).
3. Generate the spectrogram image of the audio signal, and
convert it into its equivalent gray-scale image
4. Chose name-value parameters, such as cell and block size.
5. Extract HOG features from each cell of the gray-scale
spectrogram.

Algorithm 11. Haralick’s feature extraction.

1: Result: 14-dimensional Haralick’s features.
2: Initialization: mono-channel audio signal xi(t).
3: Generate spectrogram of the audio signal.
4: Convert RGB spectrogram into its gray-scale equivalent
image.
5: Calculate gray-level co-occurrence matrix from the
gray-scale spectrogram image.
6: Calculate basic 14 statistical features from the matrix.

cent pixel in the space. These 14 features are derived from
the co-occurrence matrix. They describe the texture of an
image. The 14 features include angular second moment,
contrast, correlation, variance, inverse difference moment,
sum average, sum variance, sum entropy, entropy, differ-
ence variance, difference entropy, information measure of
correlation 1 and 2, and maximum correlation coefficient
[29].

2.3 Timbre-Based Features
Timbre refers to the texture, character, and color of a

sound that defines it. Timbre is actually the perceived sound
quality of a musical note or sound [37]. The timbral tex-
ture features are based on the standard features proposed
for music-speech discrimination and speech recognition [8,
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Algorithm 12. Spectral centroid of an audio signal.

1. Result: spectral centroid μ1.
2. Initialization: mono-channel audio signal xi(t) and sampling
frequency fs .
3. Convert the signal into frequency domain.
4. Compute spectral centroid using Eq. (13).

38–40]. A representative set of timbre-based audio texture
features are discussed below.

2.3.1 Spectral centroid:
This feature indicates where the center of mass of the

spectrum is located. The spectral centroid indicates the
brightness of the sound signal. The higher centroid val-
ues correspond to the “brighter” textures with more high-
frequency components. It is defined as

μ1 =
∑b2

k=b1
fksk∑b2

k=b1
sk

, (13)

where fk is the frequency corresponding to bin k, and sk is
the spectral value at bin k. b1 and b2 are band edges [8, 38,
40].

2.3.2 Spectral flux:
The spectral flux is defined as 2-norm of the frame-to-

frame spectral amplitude difference vector. It points out
the sudden changes in the frequency-energy distribution
of sounds. In simple words, spectral flux measures how
quickly the power spectrum of a signal is changing. For
high-texture audio signals, the value of the flux would be
comparatively lower than that for low-texture signals, such
as music. The spectral flux is defined by Eq. (12) as

Flux =
b2∑

k=b1

(Nk − Nk−1)2, (14)

where N is the normalized magnitude of the Fourier trans-
form for the bin k and k − 1.

2.3.3 Spectral roll-off:
The spectral roll-off point is the frequency below which

95% of the signal’s energy is contained. The roll-off point
is i if Eq. (15) holds true [8, 38].

i∑
k=b1

sk = 0.95 ×
b2∑

k=b1

sk, (15)

where sk is the spectral value at bin k and b1 and b2 are
band edges.

2.3.4 Spectral flatness:
Spectral flatness indicates the uniformity in the fre-

quency distribution of the power spectrum. Mathematically
spectral flux is the ratio of the geometric to arithmetic mean
of the periodogram signal [8, 38, 40]. The low-textural au-
dio signals, such as harmonic sounds, have spectral flatness

Algorithm 13. Spectral roll-off point of an audio signal.

1. Result: spectral roll-off.
2. Initialization: audio signal xi(t) and sampling frequency fs .
3. Transform the signal in frequency domain.
4. Compute spectral centroid using Eq. (15).

Algorithm 14. Spectral flatness value of an audio signal.

1. Result: spectral flatness value.
2. Initialization: Mono-channel audio signal xi(t).
3. Calculate the periodogram power spectral density of the
audio signal.
4. Calculate the ratio of the geometric to arithmetic mean of the
periodogram signal.

Algorithm 15. Short-time energy of an audio signal [8].

1. Result: short-time energy of the audio signal.
2. Initialization: mono-channel audio signal xi(t) and window
type, amplitude, and length.
3. Calculate xnew = x2.
4. Find ST E = xnew

⊗
win (convolution of window and

signal square).

close to zero, and high-texture noise, like signals, have spec-
tral flatness close to one. Steps to calculate spectral flatness
are explained in Algorithm 14.

2.3.5 Short-time energy:
The energy throughout an audio signal is variable, and

hence it is not feasible to predict a value. For this, the short-
time energy, which is energy from a frame, is calculated [8,
38–40]. High-texture audio signals have uniform short term
energy, while less-textural audio signals show high varia-
tion in short-time energy values. Algorithm 15 describes
the steps to calculate short-time energy of an audio signal.

2.3.6 Zero crossing rate:
The ZCR of an audio frame is defined as the rate of

change of sign of the signal during the frame. Mathemati-
cally it is the number of times a signal changes its sign from
positive to negative and vice versa, divided by the length
of the frame [8, 38, 40]. The ZCR for ith frame with the
length N is defined as

Z (i) = 1

2N

N∑
n=1

|sgn[xi (n)] − sgn[xi (n − 1)]|, (16)

where sgn(.) is a sign function, i.e.,

sgn[xi (N )] =
{

1, xi (n) ≥ 0
0, xi (n) < 0

. (17)
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Algorithm 16. Mel frequency cepstral coefficient (MFCC)
features from an audio signal [8].

1. Result: mel frequency cepstral coefficients.
2. Initialization: mono-channel audio signal xi(t).
3. Frame the signal into short frames. Use windowing.
4. For each frame, calculate the periodogram estimate of the
power spectrum.
5. Apply the mel filter-bank to the power spectrum, and sum the
energy in each filter.
6. Take the logarithm of the filter-bank energies.
7. Take discrete cosine transform (DCT) of the log filter-bank
energies.
8. Keep 2–13 DCT coefficients, and discard the rest.

2.3.7 Mel frequency cepstral coefficients
(MFCCs):

MFCC represents the short-time power spectrum of an
audio clip based on the discrete cosine transform of log
power spectrum on a nonlinear mel scale. In MFCCs the
frequency bands are equally spaced on a mel scale, which
mimics the human auditory system. The MFCC is one of the
most popular audio features that are used in many appli-
cations such as speech recognition, speech enhancement,
music genre classification, vowel detection, mood detec-
tion, and many more [8, 13, 41, 40]. The first and second
derivative of MFCCs, delta MFCC and delta-delta MFCC,
have been used as textural features in various applications
[13].

Table 2 summarizes the textural features used in analysis
of audio textures in various applications. The three main
categories are statistical, image-based, and selected timbre-
based textural features.

2.4 Deep Features for Texture Analysis
The deep learning algorithms have gained popularity in

many audio applications [8]. Audio texture analysis and
synthesis is one of those applications. The lower layer in a
deep network captures the style and melody-based features
from an audio signal, while the higher layers in the network
capture the overall style of the audio sample. The features
passed from one layer to another are called as deep features.
In [42] and [43] deep features are extracted and analyzed
from a convolution neural network (CNN).

In [44] timbre-based and rhythm-based features are ex-
tracted from two blocks of CNN structure. A three-stage
deep model is designed to perform audio style transfer. A
textural audio is synthesized by analyzing the deep fea-
tures generated by this three-stage deep model. In [45] the
authors have analyzed statistical features extracted from
McDermott’s model. In this work, the model is consid-
ered a three-layer hand-crafted neural network where the
first layer has 30 band-pass filters to decompose audio sig-
nals into frequency bands. The second layer captures the
envelope features from each frequency band and applies a
non-linearity to it. The third layer decomposes the envelope
using 20 band-pass modulation filters. This model extracts
the statistical features up to fourth order.

Another popular deep learning technique in audio tex-
ture analysis is recurrent neural network (RNN) [11, 46].
In [47] a three-tier RNN is used. This network extracts
features, such as MFCCs, spectral centroid, spectral flat-
ness, and pitch, and employs these features to synthesize
other audio textural signals. In recent works, long short-
term memory (LSTM) is used for audio texture analysis
in many applications, such as event detection [48], music
generation, texture synthesis, music genre classification,
and more. In a few of the works, LSTM is combined with
other algorithms to generate a hybrid model, such as LSTN-
CNN and Bi-LSTM [48]. In [48] the authors demonstrated
that the texture analysis using the LSTM-CNN approach
has outperformed other customized classifiers, such as sup-
port vector machines (SVM), K-nearest neighbors (KNN)
decision tree, and stand-alone LSTM. The hybrid model
LSTM-CNN has also been used for speech emotion detec-
tion [49, 50]. In [51] the authors analyzed deep textural
features using LSTM. In that work, the textural features,
such as ZCR and MFCC, are fed into the LSTM model to
generate deep features. These deep features are used for
music genre classification.

3 AUDIO TEXTURE SYNTHESIS

Most of the work done in audio textures is in the field of
analysis/re-synthesis. In this the synthetic audio textures are
augmented by analyzing the properties of the original audio
texture. The most common ways to synthesize audio tex-
tures are by using granular-based, physical model–based, or
deep learning approaches. In this section, all the approaches
are explained in detail. Fig. 4 shows the evolution of audio
texture synthesis methods. In [52] the summary of various
audio texture synthesis algorithms is explained.

3.1 Granular-Based Synthesis
Granular-based audio texture synthesis is based on the

process called “granulation” [53–55]. For the first time the
granular-based audio synthesis approach were used in mu-
sic synthesis in [56]. In this process the audio texture is
divided into little slices called “grains.” The slicing of au-
dio signal is quite similar to the sampling of the signal. As
per the initial assumptions, the size of the grain could be
anywhere between 1 and 100 ms [57], but in a few practi-
cal applications the size of the grain could be as small as
20 ms [58]. These grains are played, synthesized, or over-
lapped to generate new audio textures. The order of the
grains in the synthetic audio is user dependent. Depend-
ing on the size of the grain and number of grains used for
synthesis, the perceptual quality of the audio could be con-
trolled [59]. Presently granular-based synthesis is highly
used at the commercial level to generate synthetic audio
signals/textures.

Using this granular-based synthesis, audio textures have
been synthesized for various applications. In [58] for the
first time, audio textures were synthesized using wavelet
tree learning. That work was based on the fact that tech-
niques such as wavelets and short-time Fourier transform
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Table 2. Summary of audio textural features.

Audio textural feature Feature name

1. Conditional moments
a) Spectral moments

Statistical features b) Temporal conditional moments
c) Joint temporal-spectral moments
2. Temporal correlations
3. Spectral correlations
4. Spectro-temporal correlations
5. Mean instantaneous frequency

1. Local binary patterns
Image-based textural features 2. Local ternary patterns

3. Histogram of oriented gradients
4. Haralick’s features

1. Spectral centroid
2. Spectral flux
3. Spectral roll-off

Representative set of timbre-based features 4. Spectral flatness
5. Short-time energy
6. Zero crossing rate
7. Mean crossing rate
8. Mel frequency cepstral coefficients

provide the local representation or grains of an audio texture
signal [55, 60]. This method is equally good for periodic
and stochastic audio textures.

In [61] and [62] the authors synthesized audio textures
by using a similarity index between frame-based MFCC
audio features. The grain/frame size chosen here was 32 ms.
Extending their current work, the authors proposed a very
interesting application of audio texture synthesis in which
the missing part of an audio is determined by analyzing
the audio textures [2]. That work was based on the concept
of self-similarity. Also the concept of constrained texture
synthesis was explored for the first time, where the missing
part should be perceptually smooth at the joint points with
the original audio clip.

Another development in granular synthesis comes into
picture when time and frequency frames are considered as
the grains. In [63] the authors proposed a cascade time-
frequency linear prediction model, where the linear pre-
diction in time and frequency are cascaded to capture the
spectral and temporal information respectively. During syn-
thesis of audio textures, white noise was chosen as a starting
seed. The residual parameters extracted from the analysis
process were used to design the filter coefficients to synthe-
size the audio texture. There are two major restrictions on
this work, which are first, while analyzing the textures, the
representation of the audio signal is compressed in a lossy
way, and second, the audio clips of arbitrary length cannot
be generated by this synthesis model.

Fig. 4. Evolution of audio texture’s understanding, analysis, and synthesis.
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The work in [63] was expanded by Zhu and Wyse in
[64]. The analysis and synthesis of audio textures was done
by extracting the linear prediction coefficients (LPC) and
residues from the time-frequency domain of the signal. By
using LPC filters in both time and frequency domain, the
perceptual quality of the sound textures can be preserved.
Another advantage of this method is that the generated
audio textures could be of arbitrary length.

Later after 2002 physics-based granular synthesis meth-
ods were employed to generate texture-like sounds. In [65]
the author introduced physically informed stochastic event
modeling for generation of texture-like sounds, such as ice
cubes in a glass or rain drops. In [66] the author also devel-
oped an analysis/synthesis system for walking sounds. Sim-
ilar experiments were conducted to generate wind chime
sounds [67], but these physics-based methods were not
based on audio signal processing techniques. In [68] another
method called overlap-add granular synthesis is proposed.
This is comparatively easy to implement granular synthesis
for audio textures. The blocks/grains are extracted from the
original stochastic source and then these blocks are over-
lapped and added to synthesize a new texture audio. Fig. 5
shows the process of creating new textures by adding the
overlapped blocks.

In 2010 Schwarz et al. proposed a corpus-based cogni-
tive synthesis method that uses the audio descriptors such
as pitch, loudness, and brilliance of an audio signal to syn-
thesize the audio textures of various intensities [69]. In
this method, authors have synthesized audio textures for
light rain, medium rain, and heavy rainfall. In 2011 the
corpus-based granular synthesis method was implemented
in interactive audio-graphic 3D scenes [70]. Later in 2013
Schwarz experimented the audio texture synthesis by using
1D continuous manual annotation of environmental record-
ing.

Another method of synthesizing audio texture is based
upon a two-level montage approach where the low-level and
high-level details are preserved. This approach has been
used to identify events in the audio textures and find the
missing part of an audio clip [71, 72]. Schwarz et al. inves-
tigated three different approaches for sound texture synthe-
sis: concatenated synthesis with descriptor controls, mon-
tage synthesis, and a new method called “Audio Texture.”
The timbre-based audio descriptors such as Loudness, Fun-
damental Frequency, Noisiness, Spectral Centroid, Spectral
Spread, and Spectral Slope are extracted and used [73, 38].

Also some work has been done in synthesizing the musi-
cal audio textures. The musically expressive audio textures
have been generated by using generalized audio. The gener-
alized audio is produced by using a statistical decorrelation
technique, such as principle component analysis and dy-
namic time warping algorithm [74, 75]. In these methods, a
single musical texture is generated by mixing many musical
textures captured from various songs and radio stations.

An interesting approach is given by Zheng et al. in [76].
In this work, the authors have synthesized an audio scene
texture by combining more than one audio texture. A deco-
rative sound texture for soundscapes has been generated by
this method. A rainy day on a street is generated by com-

bining three sound textures: rain dropping on the ground,
rain dropping on umbrellas, and birds chirping nearby [76].

3.2 Model-Based Synthesis
Most of the work about texture sound synthesis is done by

implementing model-based synthesis methods. The model-
based methods are based on the physiological models of
human hearing systems, statistical models, and improved
time-frequency representation models. The model-based
synthesis methods are explored mostly after the year 2000
and includes many variations. In 2002 the environmental
sound textures were generated by iterating non-linear func-
tions based on the perceptual modeling arising from the
system dynamics [77, 78]. Later in 2003 a spectral and sta-
tistical model was proposed to synthesize time-scale modi-
fied noise like audio signals. This method uses the standard
synthesis-by-analysis approach. The main advantage of this
method is that it permits high-quality synthesis of noisy sig-
nals and allows infinite time-scaling without degrading the
original sound [79].

A data-driven framework for analyzing, transforming,
and synthesizing sound textures is proposed in [80]. In this
work, the background audio scene is analyzed to find the
audio textures present in this, and then transformation of
these audio textures is used to synthesize new audio tex-
tures for generating audio scenes. In 2009, Josh McDermott
proposed a model for audio texture sound synthesis that is
inspired by the image texture analysis model [21, 12]. In
this work, higher order statistics and spectral correlations
between sub-band signal envelopes were extracted and su-
per imposed on Gaussian noise signal during synthesis pro-
cess. The filters used in the analysis process are based on
the band-pass filters that are present in the human ear. It has
been concluded that imposing only the marginal statistics
(variance and kurtosis) of the sub-bands was sufficient to
generate synthetic examples of many audio textures, such
as rain, streams, etc.

Later in 2011 the model proposed by McDermott in [12]
is further modified. The new model used an equivalent
rectangular bandwidth filter-bank to divide the signal into
various perceptual bands. These perceptual bands were fur-
ther divided into sub-bands called modulation bands. The
first four statistical parameters (mean, variance, skewness,
and kurtosis) were extracted from each modulation and per-
ceptual band, and the cross-correlations between adjacent
bands were also calculated. Because this model was based
on the human auditory system, it soon becomes one of the
most popular models for texture sound synthesis. Josh Mc-
Dermott proposed a similar human auditory-based model
to extract textural information from the audio signals. This
method is very simple and uses MFCCs to extract statisti-
cal features [13]. It is one of the popular algorithms that is
based on the model proposed by McDermott in 2009 [12].
Fig. 6 represents the proposed methodology.

Inspired by McDermott’s work, in 2013 another method
of audio texture synthesis was proposed that was based
on short-time Fourier transform representation of an audio
texture [20]. In this method, each bin is considered a sub-
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Fig. 5. Audio texture synthesis using overlap-add method.

band. The statistical parameters, such as auto-correlation
cross-correlation and moments, are extracted from each bin
and used in the synthesis process. Another way of model-
ing, classifying and recognizing sound textures, is through
the empirical mode decomposition (EMD). The audio sig-
nal is first decomposed using EMD, and then those EMDs
are used for texture analysis and recognition [81–83]. An
ensemble-based hand clapping audio texture synthesis is
done in past keeping room acoustics in mind. The synthesis
process is tuned with respect to the room parameters for
a small or medium-sized room [84, 85]. Another attempt
to synthesize long term audio, such as airplane cabin noise
and piano sounds, has been made in [86].

Within the last decade, the scattering transforms have
been introduced and successfully employed in proving the
state of the art results for texture synthesis, texture dis-
crimination, and genre recognition. The scattering trans-
forms iterate on complex wavelet transform. Scattering
moments provide general representations of stationary pro-
cesses computed as expected values of scattering coeffi-
cients [87–90].

3.3 Deep Learning for Texture Synthesis
The audio texture analysis and synthesis is no longer

away from deep learning algorithms. The concept of audio
texture analysis or synthesis using deep learning is bor-
rowed from the image style transfer concept [91, 92]. Even
if the concept of audio style transfer is borrowed from the
image style transfer, there is still some differences between
the two. These differences are explained by Dieleman in
[93]. In image style, lower layers shows simple visual pat-
terns, such as lines and corners, and higher layers represent

the complex features, such as human or animal faces, au-
tomobiles, etc. In audio style transfer, lower layers identify
local stylistic and melodic features, and higher layers rep-
resent the overall style.

In [91] Gatys et al. used the cross correlation between
the feature maps of 2D CNNs as parameters to analyze and
synthesize image textures. In the last couple of years, audio
texture analysis has been done by using deep algorithms
mostly by CNNs and RNNs [94]. In [95] audio texture has
been synthesized using 2D CNNs, and the synthesis process
is back-propagated until the temporal cross-correlations of
the feature maps resemble those of the target textures. Au-
thors have shown that the synthesized audio textures are
better in quality than the original audio samples.

A different approach of synthesizing audio texture has
been introduced by Antognini et al. in [42]. Two new terms,
an autocorrelation term and diversity term, have been intro-
duced. These two terms contribute to the loss function of the
CNN. In that work, the authors showed that there is a trade-
off between diversity and quality of the audio texture. In
[47] the authors implemented multi-tier conditioning RNNs
that synthesized the multi-level paradigm of the constant
fine structure of audio textures. The researchers used the
pre-trained networks VGG-19 [96], SoundNet [97], con-
nectionist temporal classification [98], and ImageNet for
audio texture analysis and synthesis. One of the CNN ar-
chitectures used is shown in Fig. 7. These techniques are
used for audio style transfer and audio texture synthesis
[99].

There are several initial attempts at audio style transfer
[99, 100, 45, 101]. In a blog, authors have recommended
the use of shallow networks instead of deep pre-trained

Fig. 6. Human auditory based textural features. FFT, fast Fourier transform; MFCC, mel frequency cepstral coefficient.
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Fig. 7. Convolution neural network (CNN) architecture.

Fig. 8. Summary of audio texture features.
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networks such as in the case of image processing [102].
On the other hand, few researchers keep working on the
deep and pre-trained networks [103]. There was also an
attempt to isolate prosodic speech using the style transfer
approach, although only low-level textural properties of the
voice were successfully transferred [104].

Table 3 summarizes the audio texture synthesis methods
including granular-based, model-based, and deep learning–
based algorithms.

4 APPLICATIONS OF AUDIO TEXTURES

The audio textures have been explored by researchers
mainly in the applications related to audio scene analysis,
speech and music, biomedical signals, creative arts, and
recommendation systems. These applications are explained
below in detail.

• Audio scene analysis (ASA): The ASA describes
the application area where the audio signals are
used to identify the environment where they are pro-
duced. ASA is required in many applications, such
as information indexing and retrieval in multimedia
databases, video editing, and more. Audio textures
and its associated features, such as LBP and HOG,
are used in ASA [106]. In many application MFCCs
have been used for ASA [107]. Recently deep learn-
ing algorithms have taken the TFR of the textural
audio as an image and performed various classifi-
cation tasks [32, 33, 108, 24, 109, 110]. The most
popular ASA database available is Detection and
Classification of Acoustic Scenes and Events, and
recently a new database SARdb has been released
[111].

• Speech and music: In the case of speech and music,
audio textures have been vastly explored for emotion
detection via speech and music genre classification.
In [112] the authors detected applause sound textures
in music by using MFCCs and low-level descrip-
tors. Emotion estimation from an audio/speech sig-
nal is not new, but very few attempts have been made
to detect emotions using textural features [27, 36].
Another speech-based application is the analy-
sis of pathological speech. Recent studies have
shown that the most-used features for the screen-
ing of pathological speech signals are acoustic
features, such as jitter, skewness, kurtosis, peak
frequency, MFCCs, and linear prediction coef-
ficients [8]. Recently few attempts have been
made to analyze and screen pathological speech
signals using texture-based features [29, 113].
Another popular application is audio synthe-
sis. In this, the audio clip or audio texture
is synthesized by analyzing the existing au-
dio textures. It has been highly explored by
many researchers in last decade or so [14–37].
Music genre classification is a very popular applica-
tion. In this, the musical clips are classified according
to their genre such as classical, electronic, jazz/blues,

metal/punk, rock, and more. Most of the work in this
application is based on standard audio features, such
as MFCCs [41], but recent studies have shown that
textural features, such as LBP and HOG, could be
used to classify these genres by using TFRs [13, 114,
115, 40, 116].

• Creative arts: Most of the work in this domain is
done for synthesizing audio signals using style trans-
fer. The audio style transfer is inspired by the concept
of image style transfer. Audio style transfer is one
of the most recent and popular audio texture appli-
cations, especially on social media. This application
looks for how to transfer the style of the reference
audio signal to a target content. The resultant sound
is often the mixture of the style and content sound
[99, 100, 45].

• Industry/machine health: Currently in the industry,
a machine or gear fault diagnosis is done by analyz-
ing the vibration sounds using image-based texture
features and machine learning. In state of the art, the
fault diagnosis using vibration signals is done in in-
duction motors, helicopter machine, or oil pumping
machine [117–119, 17].

• Recommendation systems: In this domain, the rec-
ommendations to find the missing part in the audio
signal has been made. This is another application
where a missing part of the audio clip is regenerated
based on the audio textures present in the rest of the
signal. This application is based on the concept of
self-similarity. Also the concept of constrained tex-
ture synthesis is explored for the first time where the
missing part should be perceptually smooth at the
joint points with the original audio clip [2].

5 SUMMARY AND DISCUSSION

This review paper discusses the audio texture’s basics and
how audio textures are different from the speech and music
signals in terms of their time domain and time-frequency
representation. This review also covers the baseline work
and evolution of audio textures right from the 1990s to their
progress to date. This paper discusses the various synthe-
sis algorithms, such as model-based, granular-based, and
modern deep learning–based algorithms. This work also
explores the types of textural features employed in vari-
ous applications. The statistical, image-based, and timbre-
based textural features are discussed in detail. Fig. 8 gives
a bird’s eye view of the various textural features. For ex-
ample, the most popular audio textural image-based fea-
tures are LBPs, LTPs, HOG, and Haralick’s. Similarly, the
timbre-based textural features are spectral flatness, spectral
roll-off, spectral flux, spectral centroid, short-time energy,
ZCR, and MFCCs.

In the future, a more comprehensive analysis of audio
textures could be done. A detailed discussion on texture
versus speech/music could also be done. A change in trends
of audio textures and its applications is expected when
more machine learning and deep learning algorithms are
explored.
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Table 3. Summary of audio texture synthesis methods.

Synthesis method Year Citation Algorithm

1988, 1992 [54, 53] Define grains
1988 [56] Music synthesis
2001 [55] Natural grains
2002, 2003 [61, 62] MFCC
2002 [58] Wavelet tree learning

Granular-based synthesis 2003 [63] Cascade time-frequency LPC
2004 [57] Grain size is defined
2004 [64] LPC
2002, 2002, 2004 [65–67] Physics-based synthesis
2003 [75] Karhunen-Loève transform
2009 [68] Overlap-add granular method
2010, 2011 [69, 70] Corpus-based cognitive synthesis
2013 [105] Manual annotation–based
2014, 2016 [71, 72] Montage approach
2015, 2016 [38, 73] Audio descriptor–based
2020 [76] Concatenation of textures

1999, 2002 [77, 78] Perceptual modeling
2003 [79] Synthesis-by-analysis
2006 [80] Data-driven framework

Model-based synthesis 2009 [12] Statistical model
2011 [13] MFCC-based
2010, 2012 [81, 82] Empirical mode decomposition
2013 [20] STFT-based
2012, 2012, 2013, 2014 [87–90] Scattering transform
2009, 2020 [84, 85] Ensemble-based approach

2018 [86] Long-term textures
2014, 2015, 2016 [96, 91, 92] Image-based methods

Deep learning–based synthesis 2014 [93] Audio textures for music
2016 [97] SoundNet
2016, 2017, 2017, 2018 [102, 100, 104, 45] Audio style transfer
2018 [42] Autocorrelation, diversity in CNN
2019, 2020, 2021 [95, 47, 94, 101] 2D CNN and RNN
2020 [99] Visual style texture synthesis

Note: CNN, convolution neural network; LPC, linear prediction coefficients; MFCC, mel frequency cepstral coefficient; RNN, recurrent neural
network; STFT, short-time Fourier transform.
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Wind Chime Sounds With Stochastic Event Triggering,”
in Proceedings of the IEEE 6th Nordic Signal Processing
Symposium, pp. 212–215 (Espoo, Finland) (2004 Jun.).
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