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The Wave Digital Filter (WDF) formalism is becoming a popular approach for the digital
emulation of audio circuits. Nonlinear WDFs, like other kinds of discrete-time nonlinear
filters used in Virtual Analog modeling applications, are often affected by aliasing distortion.
Recently formalized Antiderivative Antialiasing (ADAA) methods are capable of significant
aliasing reduction even with low oversampling factors. This paper discusses different strategies
to integrate pth-order ADAA methods into stateful WDFs with a single one-port or multi-
port nonlinearity while preserving the modularity property typical of traditional WDFs. The
effectiveness of the proposed approach is verified by applying the discussed ADAA techniques
to three nonlinear audio circuits containing diode-based nonlinearities and a BJT transistor.

0 INTRODUCTION

In the past two decades, considerable research effort
has been made to develop accurate and computationally
lightweight Virtual Analog (VA) implementations of non-
linear audio circuits [1–8]. Many techniques have been pro-
posed in the literature for the digital emulation of analog
synthesizers [9–11], distortion pedals [12], and audio am-
plifiers [13, 14] that contain nonlinear circuit elements such
as diodes [15–20], transistors [21], transformers [22], and
tubes [23]. However nonlinear discrete-time systems, such
as those encountered in VA modeling, may be subjected to
aliasing distortion. This issue may occur whenever a band-
limited input signal is processed by a nonlinear function,
which adds to the signal spectrum additional frequency
components that overcome the Nyquist frequency and are
mirrored into the signal base-band as distortion artifacts,
causing inharmonicity, beating, and heterodyning [24].

High oversampling factors are commonly used as a trivial
solution to reduce aliasing. However increasing the sam-
pling frequency may lead to computationally inefficient
implementations that could violate real-time execution con-
straints. Hence alternative less expensive antialiasing meth-
ods are desirable, and many techniques have been proposed
in the VA literature, dealing with discrete-time oscillators
for subtractive synthesis [24, 25], emulations of clipping
stages used in overdrive or distortion circuits [26, 27], and

interpolation filters combined with decimation filters for
nonlinear waveshaping [28].

Recently a novel antialiasing approach applicable to a
large class of nonlinear functions, called Antiderivative
Antialiasing (ADAA), has been introduced by Parker et
al. in [29]. The method approximates the input signal as a
continuous-time piecewise linear function, applies the non-
linear function to it, and then convolves the resulting signal
with the continuous-time impulse response of a low-pass fil-
ter before sampling it back to the digital domain. Ultimately
these steps yield a less-aliased nonlinear function approxi-
mation expressed as a combination of its antiderivatives. In
[29], however, just first and second-order approximations
based on antiderivatives are discussed. Subsequently Bilbao
et al. in [30] extended the method employing higher-order
antiderivatives and reframed the approach as the repeated
differentiation of a pth-order antiderivative of the nonlinear
function.

Nonetheless ADAA presents two major drawbacks: a
low-pass filtering effect and the introduction of a frac-
tional delay of p/2 samples [31]. The first limitation can
be easily overcome through mild oversampling or by de-
signing a simple linear filter. The additional introduced de-
lay, however, becomes problematic in systems having feed-
back paths. For this reason ADAA has been applied almost
exclusively to memoryless systems [29, 30, 32]. An exten-
sion to stateful systems has been proposed by Holters in
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[33] and consists of a global parameter modification to the
coefficient matrices of the state-space formulation to com-
pensate for the additional delay introduced in the system
by the ADAA filter.

Inspired by the approach in [33], in a previous work
[34] we introduced a different methodology for applying
pth-order ADAA to stateful Wave Digital Filters (WDFs)
with a single one-port nonlinearity. Such a methodology
allows us to exploit the inherent modularity property of
WDFs in the design of ADAA algorithms for VA modeling.
This article is an extended version of [34], incorporating an
exhaustive overview of ADAA techniques applicable to
Wave Digital (WD) one-port nonlinearities. Moreover we
discuss a method for the application of ADAA to a WD
multi-port nonlinear element (the BJT).

The paper is structured as follows. Sec. 1 briefly revises
the structure of WDFs with one nonlinearity. Sec. 2 pro-
poses a novel method to integrate first-order ADAA [29]
into stateful WDFs with a single one-port or multi-port
nonlinear element. Sec. 3 generalizes the method to higher-
order ADAA. Sec. 4 discusses different generic models of
WD one-port nonlinearities and the corresponding ADAA
approximations. WD ADAA models of specific one-port
and multi-port nonlinearities, i.e., the single exponential
diode, a pair of diodes in antiparallel and the BJT, are then
presented in Secs. 5 and 6. The effectiveness of the proposed
ADAA approach in the WD domain is verified in three ex-
amples of application discussed in Sec. 7. Sec. 8 concludes
this paper and proposes possible future developments.

1 BRIEF OVERVIEW ON WDF MODELING

WDF theory was first introduced by A. Fettweis in the
1970s and later reorganized in [35] as a methodology to
model reference analog circuits as digital filters, based on
networks of input-output blocks characterized by scattering
relations and communicating through port connections. In
particular a WDF is a port-wise lumped model of a refer-
ence circuit that detaches the topological information from
the models of circuit elements. The reference topology is
described through scattering junctions, called adaptors, en-
forcing Kirchhoff continuity laws, while circuit elements
are derived from the lumped discretization of their consti-
tutive equations. A peculiarity of WDFs is the use of the
so-called wave variables obtained from Kirchhoff variables
(i.e., current and voltage) through a linear and invertible
transformation. At one port of a circuit element, voltage
wave variables are defined as

a = v + Zi b = v − Zi, (1)

with inverse mapping

v = a + b

2
i = a − b

2Z
, (2)

where v is the port voltage, i is the port current, a is the
wave incident to the element, b is the wave reflected from
the element, and Z is an additional free parameter, called
reference port resistance. This free parameter is set to adapt
linear circuit elements, thus obtaining explicit WD scatter-

Table 1. Wave mappings of common linear one-ports.

Element Constit. eq. Wave mapping Adapt. cond.

Res. Sour. v = Eg + Rgi b[k] = Eg[k] Z = Rg

Resistor v = Ri b[k] = 0 Z = R
Capacitor i(t) = C dv(t)

dt b[k] = a[k − 1] Z = Ts
2C

Inductor v(t) = L di(t)
dt b[k] = −a[k − 1] Z = 2L

Ts

ing relations in the discrete-time domain in which the re-
flected wave does not depend on the incident wave. In this
way local delay-free-loops arising from the port connec-
tions of elements to WD junctions are eliminated. More-
over continuous-time derivatives in constitutive equations
of dynamic elements (e.g., capacitors and inductors) are
typically approximated using the trapezoidal discretization
method. Adapted WD models of capacitors and inductors
become one-sample delay elements (with a sign flip for in-
ductors). The constitutive equations in the continuous-time
Kirchhoff domain, discrete-time scattering relations in the
WD domain, and corresponding adaptation conditions of
most common linear one-port elements are reported in Ta-
ble 1, where Ts = 1/fs is the sampling period defined as the
reciprocal of the sampling frequency fs.

On the other hand connection networks embedding the
topological information of the reference circuits are im-
plemented in the WD domain using scattering junctions
(adaptors) characterized by scattering matrices [35]. Gen-
eral formulas for computing the scattering matrices that
model arbitrary reciprocal or nonreciprocal connection net-
works are discussed in [36–41].

1.1 WDFs With Connection Tree Structure
In order to ensure the computability of a WD structure the

corresponding signal-flow diagram should not contain any
delay-free loop [35, 40, 42, 43]. Sarti et al. [44] proposed a
systematic method to implement circuits containing up to
one nonlinear element using explicit WD structures, which
avoid the use of iterative solvers. The approach in [44] is
applicable to WD networks with a Binary Connection Tree
(BCT) structure. A BCT is characterized by one (nonlin-
ear) element as root, an interconnection of series/parallel
three-port junctions as nodes, and adapted linear one-port
elements as leaves. Each three-port junction is adapted to-
ward the root, which means that all junction ports facing
other junctions (i.e., other nodes) or the nonlinear element
(i.e., the root) are made reflection free by properly setting
the corresponding free parameters.

In light of the recent advances in the WD modeling of
reciprocal [39] and non-reciprocal [38] junctions, the BCT
concept can easily be generalized to the concept of Con-
nection Tree (CT), whose root is a nonlinear element, nodes
can be adaptors with N � 2 ports, and leaves are adapted
linear elements. The root can also be a J-port nonlinear-
ity to which J > 1 different subtrees are connected [3, 17,
21, 23, 45–48]. Under the assumption that no topological
delay-free-loops are present, a CT can also be implemented
in an explicit fashion.
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WD Junction

Fig. 1. Single-junction WDF with one nonlinear element.

The evaluation of a CT consists of three main phases.
At first the forward scan phase is performed. It consists of
traversing the CT from the leaves to the root. At each sam-
pling step the waves reflected from adapted linear one-port
elements in each subtree are known, according to the wave
mappings in Table 1. Therefore it is possible to compute
all the waves reflected from the junctions at their adapted
ports, performing the scattering operations in the correct
order (i.e., the computational flow goes from the leaves to
the root). The second phase consists of the local root scat-
tering stage, in which the waves reflected by the (nonlinear)
element at the root are evaluated. Lastly the backward scan
stage consists of traversing the tree structure from the root
to the leaves until all the waves incident to the linear adapted
elements are computed.

In the following sections we will show how ADAA tech-
niques can be applied to WDFs with a CT structure.

2 FIRST-ORDER ADAA IN NONLINEAR WDFS

2.1 One-Port Nonlinearity Case
Let us consider the generic WDF in Fig. 1 characterized

by a single (reciprocal or nonreciprocal) N-port WD junc-
tion. N − 1 linear one-ports and one nonlinear element are
connected to the junction. Since the WDF in Fig. 1 has a CT
structure (i.e., the nonlinear element is the root, the linear
elements are the leaves, and the node is the N-port junc-
tion), it can be implemented in an explicit fashion using
the procedure, based on forward scan, local root scatter-
ing, and backward scan, discussed in the previous section.
Depending on the reference circuit, the single node can
be decomposed into an interconnection of nodes without
delay-free-loops (e.g., BCTs or CTs with multiple nodes).
However it is worth noticing that we do not lose general-
ity by describing the topological information with a single
node. The scattering matrix S of the WD N-port junction
can be computed, given the N free parameters Z1, . . ., ZN ,
according to the formulas presented in [38, 39]. The port
of the WD junction facing the nonlinear element is made
reflection free by choosing the free parameter at that port
in such a way that the corresponding diagonal entry of the
scattering matrix S goes to zero.

Matrix S relates incident and reflected waves at a sam-
pling time step k as

a[k] = Sb[k], (3)

Waves incident to the elements are collected into the column
vector a[k] = [a1[k], . . . , aN [k]]T . We assume that the WD
one-port elements are ordered as follows. Waves a1[k], . . .,
aM[k] are incident to the M < N linear dynamic elements
(capacitors and inductors). The wave at position M + 1 of
vector a[k], called aξ[k], is incident to the nonlinear ele-
ment. Finally waves aM+2[k], . . ., aN[k] are incident to lin-
ear instantaneous elements (resistors and resistive sources).
Therefore vector a[k] can be expressed as

a[k] = [a1[k], . . . , aM [k], aξ[k], aM+2[k], . . . aN [k]]T .

Similarly we can define the vector b[k] as the column vector
of waves reflected by the elements and incident to the WD
junction. Waves reflected by linear elements are computed
according to Table 1, while the nonlinear element at the
root is characterized by a scattering relation bξ = f(aξ). For
the moment we assume that f(aξ) is an explicit function in
the WD domain, available in analytic form, even though
this is not always the case. In fact, as extensively discussed
in Sec. 4, the element at the root may be characterized by a
nonlinear implicit function.

So far we have described the WD structure prior to
ADAA application. Let us now locally apply the first-order
ADAA method proposed in [29] to the root nonlinear scat-
tering relation bξ = f(aξ) by substituting f with the following
approximation (subscript ξ is omitted for better readabil-
ity):

f̃ (a[k]) =
{ F1(a[k])−F1(a[k−1])

a[k]−a[k−1] if a[k] �≈ a[k − 1]
f
( a[k]+a[k−1]

2

)
if a[k] ≈ a[k − 1]

(4)

where a[k] and b[k] are the discrete-time wave signals and
F1 is the first-order antiderivative of f. Unfortunately as out-
lined in [29, 33] the first-order ADAA filter introduces half-
sample delay in the digital structure, altering the temporiza-
tion of the system. At each time-step k the non-antialiased
version of the same system would have a unitary delay that
temporarily stores the state, to be used at time-step k + 1.
However the additional delay introduced by ADAA in the
feedback path adds up to the unitary delays implementing
capacitors and inductors, making the total delay 1.5 sam-
ples long. Therefore in addition to the altered temporization
of the system ADAA introduces a misalignment in time be-
tween the signals entering the WD junction with scattering
matrix S during the backward scan stage.

Let us consider (3) as the generic scattering operation
performed at time step k throughout the backward scan
stage. The column vector b[k] of waves reflected from the
elements and incident to the WD junction is given by

b[k] = [b1[k], . . . , bM [k], b̃ξ[k], bM+2[k], . . . , bN [k]]T ,

where in turn b̃ξ[k] is defined as

b̃ξ[k] = f̃ (aξ[k]) . (5)
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Since f̃ introduces a half sample delay, it becomes clear that
there is a misalignment in time between b̃ξ[k] and all the
other elements of b[k]. To synchronize the signals we apply
a half-sample delay filter with Z-domain transfer function
H (z) = 1

2 (1 + z−1) to all the entries in b[k] but b̃ξ[k]. It
is worthwhile noticing that such a filter H(z) acts as the
ADAA filter (4) in the linear case; hence to some extent we
are applying the same antialiasing filter even to the linear
elements of the system. Thus we obtain a synchronized
version of (3), expressed as

ã[k] = Sb̃[k] (6)

b̃[k] = [b̃1[k], . . . , b̃M [k], b̃ξ[k], b̃M+2[k], . . . , b̃N [k]]T

with

b̃n[k] = 1

2
(bn[k] + bn[k − 1]), (7)

and 1 � n � N with n �= ξ. The half-sample delay filter
applied to each entry of b[k], with the exception of b̃ξ[k],
resolves the issue of time misalignment between the waves
incident to the WD junction during the backward scan. The
last open problem to be addressed is the altered timing due
to the added delay. If we further expand (6), considering
the waves reflected from dynamic elements, according to
Table 1, we obtain

b̃[k] =[±ã1[k − 1], . . . ,

± ãM [k − 1], b̃ξ[k], b̃M+2[k], . . . , b̃N [k]]T
(8)

where ãn[k − 1] = 1
2 (an[k − 1] + an[k − 2]).

Equation (8) puts in evidence that the introduced half-
sample delay results in a total delay of 1.5 samples in the
feedback path of the system. The additional delay is com-
pensated employing a method similar to that applied in [33]
to state-space systems. Therefore the coefficients of S de-
pending on the sampling period Ts are modified using an
“expanded” sampling period T̃s = 1.5Ts, since a delay of
1.5 samples corresponds to a 1-sample delay at the reduced
sampling frequency f̃s = 2 fs/3. Thus (3) is approximated
with

a[k] ≈ S̃b̃[k], (9)

where b̃[k] represents the vector b[k] after the application
of the synchronization delays in (6) and (7). Matrix S̃ is de-
fined as S̃ = S(T̃s), which means that the free parameters Z1,
. . ., ZN essential for the computation of the scattering matrix
need to be changed according to the expanded sampling pe-
riod T̃s. In particular, for capacitors we set Zn = T̃s/(2Cn)
and for inductors Zn = 2Ln/T̃s. Finally, operating the sys-
tem at its original sampling frequency fs but with modified
coefficients allows us to compensate for the additional de-
lay, completing the integration of the ADAA method into
stateful WDFs with one nonlinearity.

The discussed implementation procedure is resumed in
Algorithm 1, written in pseudo-code. We assume to have
a voltage source driven by the input signal Vin[k] and con-
nected to the jth port of the WD junction. The output signal
Vout[k], instead, is the port voltage at the lth port. Moreover
we define s̃ξ as the ξth row vector of matrix S̃. In order to

compute the output voltage Vout[k] the wave incident to the
lth element needs to be aligned with its reflected wave, as
shown in line 10 of Algorithm 1.

It is worth noting that simple modifications to Algorithm
1 should be done in order accommodate scenarios in which
current sources are present and current output signals are
considered.

Algorithm 1 ADAA in WDFs

1: for k=1:length(Vin) do
2: b1[k], . . ., bM[k] ← ±a1[k − 1], . . ., ±aM[k − 1]
3: bj[k] ← Vin[k] M + 2 � j � N � Input Signal
4: b[k] = [b1[k], . . . , bM [k], 0, bM+2[k], . . . , bN [k]]T

5: aξ[k] ← s̃ξb[k] � Forward Scan
6: b̃ξ[k] ← f̃ (aξ[k]) � 1st-order ADAA
7: b̃n[k] ← 1

2 (bn[k] + bn[k − 1]) n �= ξ

8: b̃[k] = [b̃1[k], . . . , b̃M [k], b̃ξ[k], b̃M−2[k], . . . , b̃N [k]]T

9: a[k] ← S̃b̃[k] � Backward Scan
10: ãl [k] = 1

2 (al [k] + al [k − 1])
11: Vout[k] ← 1

2 (ãl [k] + b̃l [k]) � Output Signal
12: end for

2.2 Multi-Port Nonlinearity Case
This section discusses the application of ADAA in WDFs

characterized by a CT structure and one J-port nonlinear
element (with J > 1), e.g., a BJT, MOSFET, or vacuum
tube. Let us assume for now that the WD model of the J-
port element is characterized by an explicit vector scattering
relation in the form

b� = f(a�) = [ f1(a�), . . . , f J (a�)]T , (10)

where a� = [aξ1, . . . , aξJ ] is the vector of waves incident
to the J ports of the element, b� is the vector of waves
reflected by the J ports of the element, and f is a vector
nonlinear function.

It is apparent that applying an ADAA method to (10) is
not trivial, because we are dealing with multivariate nonlin-
ear components f1(a�), . . . , f J (a�) and it is not obvious
how to compute the antiderivatives. A possibility is inte-
grating each component f j (a�) with respect to a single
variable, leaving the other variables fixed, similarly to that
done with nonlinear multi-port nonlinearities in the Kirch-
hoff domain in [49]. The choice of the integration variable
may seem arbitrary; however, in practical applications, cer-
tain variables could introduce more aliasing than the oth-
ers to the components of the vector function f. Whenever
possible such variables should be identified and chosen as
integration variables. In the following integration variables
are indicated as aξq, with 1 � q � J, where aξq may vary
from function to function. Therefore any component f j (a�)
in (10), with 1 � j � J, given its first-order antiderivative
Fj,1(a�) with respect to aξq, can be approximated by using
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the first-order ADAA method as

f̃ j (a�[k]) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fj,1(a∗
�[k])−Fj,1(a∗∗

� [k])
aξq [k]−aξq [k−1]

if aξq [k] �≈ aξq [k − 1]

f j (ã�[k])
if aξq [k] ≈ aξq [k − 1]

(11)

where

a∗
�[k] = [

ãξ1[k], . . . , aξq [k], . . . , ãξJ [k]
]
,

a∗∗
� [k] = [

ãξ1[k], . . . , aξq [k − 1], . . . , ãξJ [k]
]
,

ã�[k] = 1

2
(a�[k] + a�[k − 1]) ,

with

ãξi [k] = aξi [k] + aξi [k − 1]

2
,

and 1 � i � J, with i �= q.
It is worth noting that the differences of such an ADAA

approach applied to WDFs with one multi-port nonlinearity
with respect to the one-port nonlinearity case are confined
to how the nonlinear element is handled. In fact the consid-
erations about the temporization of the structure counteract-
ing the additional delay introduced by the ADAA filters in
the system feedback loop remain unaltered, and the coeffi-
cients of the scattering junctions depending on the sampling
period are modified as discussed in the previous section.

As in the nonlinear one-port case it is not always possible
to describe multi-port elements using explicit scattering
relations like (10), since they may be characterized by a
system of implicit nonlinear functions. We will discuss how
to manage a multi-port nonlinearity of the sort in Sec. 6,
presenting a possible WD ADAA model of the BJT.

3 HIGHER-ORDER ANTIDERIVATIVE
ANTIALIASING IN NONLINEAR WDFS

The approach described in Sec. 2 can be extended to
higher-order ADAA methods to obtain improved aliasing
suppression. As before, we consider the one-port nonlinear
element case, connected to the same WDF structure of Fig.
1. The nonlinear explicit mapping b = f(a) is now substi-
tuted with its generic pth-order ADAA approximation. In
[29] a second-order ADAA method is provided, while an al-
ternative general formulation for ADAA of arbitrary-order
p is presented in [30]. As an example, second-order ADAA
(i.e., p = 2) proposed in [30] and applied to the reference
function f(a) yields

f̃ (a[k]) = 2

a[k] − a[k − 2]

(
F2(a[k]) − F2(a[k − 1])

a[k] − a[k − 1]

− F2(a[k − 1]) − F2(a[k − 2])

a[k − 1] − a[k − 2]

)
,

(12)

where F2 is the second-order antiderivative of f. For the
treatment of numerical ill-conditioning of (12), possibly
occurring when a[k] ≈a[k − 1], a[k] ≈ a[k − 2], or a[k −
1] ≈ a[k − 2], the reader is referred to [30].

In pth-order ADAA, the approximation f̃ of f introduces
a delay of p/2 samples [31], causing the waves incident to

the junction in vector b[k] to be misaligned in time. There-
fore we need to apply synchronization delays, similarly to
what was done in (7). In particular, with higher-orders, the
synchronization delays are fractional only when p is odd.
For instance if p = 2 all the waves entering the junction,
with the exception of the wave reflected from the nonlinear
element, have to be delayed by one sample. To synchronize
the signals let us introduce a (potentially) fractional delay
of p/2 samples, with Z-domain transfer function Hp(z). Al-
though better choices in terms of spectral flatness of the
frequency response could certainly be made, in this work
we use a simple and computationally lightweight filter with
transfer function

Hp(z) =
{

1
2

(
z−� p

2 � + z−(� p
2 �+1)

)
if p is odd,

z−p/2 if p is even.
(13)

If we define Bn(z) as the Z-transform of the discrete-time
wave signal incident to port n of the WD junction, i.e.,
bn[k], a synchronized signal B̃n(z) with n �= ξ is obtained
by applying the filter Hp(z),

B̃n(z) =
Hp(z)Bn(z) with n = 1, . . . , N and n �= ξ, (14)

where B̃n(z) is the Z-transform of b̃n[k]. A synchronized
version of b[k] can now be defined as

b̃[k] = [b̃1[k], . . . , b̃M [k], b̃ξ[k], b̃M+2[k], . . . , b̃N [k]]T .

However, as in the previous section, we still need to
compensate for the additional delay of p/2 samples intro-
duced in the feedback path of the WDF by the pth-order
ADAA method. Delay compensation is achieved by mod-
ifying the coefficients of the system according to the ex-
panded sampling period T̃s = (1 + p/2)Ts. In fact a delay
of (1 + p/2) samples at the reduced sampling frequency
f̃s = fs/(1 + p/2) corresponds to a one-sample delay at
the reference sampling frequency fs. This translates to the
use of a modified scattering junction S̃ = S(T̃s) in both the
forward and backward scan stage.

In the case of a multi-node CT structure the procedure is
analogous, having to adjust the coefficients of each junction
according to the expanded sampling period T̃s. We achieve
signal synchronization during the backward scan by apply-
ing the Hp(z) filter to waves incident to each junction, with
the exception of waves incident to ports facing the nonlinear
element or other junctions.

The approach discussed in Sec. 2.2 can easily be gener-
alized to integrate pth-order ADAA into WDFs containing
one J-port nonlinear element by following the considera-
tions provided in this section.

4 GENERAL WAVE DIGITAL ADAA MODELS OF
ONE-PORT NONLINEARITIES

This section presents a general framework to derive WD
ADAA models of one-port nonlinear elements. The general
approach presented here will then be employed in Sec. 5
for deriving specific WD ADAA models of diode-based
one-port nonlinearities.
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The most general description of an instantaneous non-
linear one-port in the Kirchhoff domain is based on the
following equation:

gK(i, v) = 0. (15)

Often (15) can be made explicit, either obtaining a nonlinear
voltage-controlled nonlinearity in the form i = fi(v) or a
current-controlled nonlinearity in the form v = fv(i).

When it comes to deriving the WD model of a nonlin-
ear element, depending on the specific nonlinearity and the
form of its constitutive equation, it might be convenient
to apply the transformation from the Kirchhoff domain to
the WD domain using different variable substitution strate-
gies, i.e., directly applying the mapping in Eq. (2) or using
intermediate hybrid substitutions involving both Kirchhoff
and WD variables. In the following we will show that such
different variable substitution choices also lead to differ-
ent approaches for deriving WD ADAA models of nonlin-
ear one-ports. Similar considerations on the modeling of
grouped multiple nonlinearities in WDFs are discussed in
[50].

4.1 ADAA in the Domain of Wave Variables
In this subsection we consider ADAA approaches that

work entirely in the domain of wave variables: by applying
the transformation in Eq. (2) to each Kirchoff variable in
(15), a nonlinear relation between a and b in the WD domain
is obtained, which may or may not be explicit.

Whenever it is possible to obtain an explicit function in
the form b = f(a), ADAA can be applied directly according
to Eqs. (4) and (12). Otherwise a possible approach consists
of tabulating the solution of the resulting implicit nonlinear
function gW(a, b) = 0 and performing data interpolation
at runtime. In order to evaluate ADAA formulas, like (4)
and (12), it is also necessary to compute the antiderivatives
numerically, starting from the tabulated points. Approaches
employing lookup tables have already been shown to be
suitable for VA applications and have been extensively used
in the literature within the WDF [45, 47] and state-space
[2, 51] frameworks.

The proposed procedure can be resumed with the follow-
ing list of steps, where the first three steps are performed
offline:

� Store an ordered set of L values for the incident wave
a over a certain range and collect them in a vector
alut = [a(1), . . . , a(L)].

� For each value a(l) in alut, solve the implicit
function gW(a(l), b(l)) = 0 for b(l), employing
an iterative solver (e.g., Newton-Raphson), and
store the result b(l) = f(a(l)) in the vector flut =
[ f (a(1)), . . . , f (a(L))].

� Numerically integrate flut with respect to alut, ob-
taining Flut,1. The second-order antiderivative Flut,2

(and higher-order antiderivatives) can be computed
similarly.

� At each discrete-time step k, ADAA formulas, like
(4) and (12), can be applied on the interpolating func-

tions f (a) = interp(flut, a), F1(a) = interp(Flut,1, a)
and F2(a) = interp(Flut,2, a), where the generic op-
erator interp simply indicates that the tabulated
points are interpolated given the input variable a.

4.2 ADAA in the Hybrid Wave-Kirchhoff Domain
In many cases given the wave a incident to a nonlinear

element it is convenient to evaluate the reflected wave b by
using hybrid Wave-Kirchhoff (WK) domain descriptions
of the nonlinearity, as they can be easier to handle than
the corresponding expressions solely containing wave vari-
ables. A hybrid WK description is obtained by expressing
solely the port voltage v or port current i in (15) in terms of
wave variables, according to one of the following relations
[38, 39]

i = a − v

Z
, v = a − Zi. (16)

The result is a nonlinear function in one of the two forms:
gWv(v, a) = 0 or gWi(i, a) = 0. Solving gWv(v, a) = 0 for v
or gWi(i, a) = 0 for i, the reflected wave b can be computed
by using one of the following equations

b = 2v − a, b = a − 2Zi. (17)

Dealing with certain nonlinearities it is possible to turn
gWv(v, a) = 0 or gWi(i, a) = 0 in explicit form by expressing
the port current or port voltage as a function of a, i.e., i =
i(a) or v = v(a). In such cases we can apply ADAA to those
functions. As an example, employing first-order ADAA,
the nonlinear functions v(a) and i(a) are approximated by

ṽ(a[k]) =
{ V1(a[k])−V1(a[k−1])

a[k]−a[k−1] if a[k] �≈ a[k − 1]
v

( a[k]+a[k−1]
2

)
if a[k] ≈ a[k − 1]

(18)

and

ĩ(a[k]) =
{ I1(a[k])−I1(a[k−1])

a[k]−a[k−1] if a[k] �≈ a[k − 1]
i
( a[k]+a[k−1]

2

)
if a[k] ≈ a[k − 1]

(19)

where V1(a) and I1(a) are the first-order antiderivatives of
v(a) and i(a), respectively. ADAA application to Eq. (17)
hence yields the following antialiased scattering relations

b̃ = 2ṽ − ã, b̃ = ã − 2Zĩ . (20)

It is worth noticing that also the incident wave ã in (20) has
been synchronized with the antialiased functions ṽ and ĩ ,
due to the intrinsic ADAA delay. Signals synchronization
is obtained by applying the delay filter H(z), presented in
SECS. 2 and 3, as Ã(z) = H (z)A(z), with A(z) being the
Z-transform of a.

In cases in which explicit forms i = i(a) or v = v(a)
are not available, given a set of incident waves chosen in
a suitable range and stored in the vector alut of length L,
the implicit functions gWv(v, a) = 0 and gWi(i, a) = 0
in the hybrid WK domain could be solved iteratively for
i or v and the results tabulated. Let us consider, for the
sake of brevity, only the case gWv(v, a) = 0. Following
a procedure similar to that of SEC. 4.1 for the implicit
wave mapping, for each value a(l) in alut, gWv(v, a) = 0
is solved for v using an iterative solver and the results are
stored in a vector vlut = [v(a(1)), . . . , v(a(L))]. In order to
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apply ADAA, finite sets of values of antiderivatives may
be obtained by using numerical integration. We define for
instance the vectors containing the values of first-order and
second-order antiderivatives of v as Vlut,1 and Vlut,2, respec-
tively. It follows that in the first-order case, the unknown
nonlinear function v(a) can be approximated by using the
ADAA formula (18) by performing interpolation and defin-
ing v(a) = interp(vlut, a) and V1(a) = interp(Vlut,1, a) sim-
ilarly to what was done in SEC. 4.1. An analogous approach
can be used to apply ADAA to the implicit function gWi(i,
a) = 0.

The modeling approach described in this section will be
applied in the next section to derive different WD ADAA
models of one-port diode-based nonlinearities. Even though
an exhaustive treatment of general WD ADAA models of
multi-port nonlinearities will not be presented in this pa-
per, Sec. 6 will introduce a possible WD ADAA model
of the BJT that extends certain concepts related to scalar
nonlinearities presented in this section to the vector case.

5 WAVE DIGITAL ADAA MODELS OF ONE-PORT
DIODE-BASED NONLINEARITIES

5.1 Explicit Models
The behavior of a single exponential diode or a pair of

identical exponential diodes in antiparallel can be expressed
through an explicit WD scattering relation by employing
the Lambert W function, as discussed in [15, 17, 52]. This
section revises the aforementioned scattering relations and
introduces first and second-order antiderivatives of both
wave mappings that can be employed in first and second-
order ADAA.

5.1.1 Single Diode
Let us consider the large-signal Shockley diode model,

which relates the current i through the exponential p-n junc-
tion to the voltage v across it

i = Is

(
e

v
ηVt − 1

)
, (21)

where Is is the saturation current, Vt is the thermal voltage,
and η is the ideality factor. The nonlinear Eq. (21) can be
expressed in the WD domain as an explicit mapping b =
f(a) [15, 17]:

f (a) = u(a, Z , I s, Vt ,η)

= a + 2Z Is − 2ηVtω

(
a + Z Is

ηVt
+ log

(
Z Is

ηVt

))
,

(22)

where ω indicates the Omega Wright function, defined in
terms of the principal branch of the Lambert function W0

as ω(x) = W0(ex) [52]. The first-order antiderivative of (22)
is

F1(a) = a2

2
+ 2Z Isa − η2V 2

t ω(φ(a))(2 + ω(φ(a))), (23)

while the second-order antiderivative reads as follows

F2(a) = a3

6
+ Z Isa2 (24)

− η3V 3
t

6
ω(φ(a))(12 + 9ω(φ(a)) + 2ω(φ(a))2)

where

φ(a) = a + Z Is

ηVt
+ log

(
Z Is

ηVt

)
. (25)

5.1.2 Pair of Identical Diodes in Antiparallel
The hard clipping function commonly encountered in

distortion and overdrive circuits [2, 15–17] is often imple-
mented through a pair of identical diodes in antiparallel. In
the considered WD implementation they are modeled as a
single one-port nonlinear element whose i–v characteristic
is

i = Is

[(
e

v
ηVt − 1

)
−

(
e

−v
ηVt − 1

)]
. (26)

Assuming that only one of the two diodes is conducting at
a given time instant [15, 17], the nonlinear wave mapping
for two identical antiparallel diodes can be approximated
as

f (a) = sign(a)u(|a|, Z , Is, Vt ,η), (27)

where sign(a) is the sign function. The first-order an-
tiderivative of (27) is

F1(a) = a2

2
+ 2Z Is |a| − η2V 2

t ω(φ(|a|)) (2 + ω(φ(|a|))) .

(28)

The second-order antiderivative F2 of (27) is

F2(a) = a3

6
+ Z Issign(a)a2 − V 3

t η3sign(a)

6
×ω(φ(|a|))(12 + 9ω(φ(|a|)) + 2ω(φ(|a|))2).

(29)

5.1.3 Pair of Different Diodes in Antiparallel
Whenever two antiparallel diodes are not identical, it

is no longer possible to approximate their behavior as in
(27), hence the Lambert W function cannot be exploited
for deriving an explicit scattering relation. The proposed
solution uses the hybrid WK approach discussed in SEC. 4.2
in conjunction with a one-dimensional Newton-Raphson
solver.

Let us consider the two antiparallel diodes D1 and D2

in Fig. 2, both described according to the Shockley model
(21). D1 has a saturation current Is1 and ideality factor η1,
while D2 has a saturation current Is2 and ideality factor η2.
By applying the KCL we can express the port current i as

i = iD2 − iD1 = Is2

(
e

v
η2 Vt − 1

)
− Is1

(
e

−v
η1 Vt − 1

)
. (30)

By substituting i = (a − v)/Z into (30), an implicit function
in the form gWv(v, a) = 0 is obtained. According to the
method discussed in SEC. 4.2, the implicit mapping is solved
iteratively at some points a(l), and the result is stored in a
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Fig. 2. One-port model of a pair of antiparallel diodes.
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Fig. 3. Ebers-Moll model.

lookup table. At each point a(l) we can define h(v) = gWv(v,
a(l)) = 0 as

h(v) = v − a(l) + Z Is2

(
e

v
η2 Vt − 1

)
− Z Is1

(
e

−v
η1 Vt − 1

)
,

(31)

with derivative

h′(v) = 1 + Z Is2

η2Vt
e

v
η2 Vt + Z Is1

η1Vt
e

−v
η1 Vt . (32)

Equations (31) and (32) are then used to solve gWv(v, a(l))
= 0 for v with the Newton-Raphson method. Finally, the
application of ADAA follows the procedure detailed in SEC.
4.2, and the reflected wave is computed by using the first
equation in (20).

6 MODELING THE BIPOLAR JUNCTION
TRANSISTOR (BJT)

6.1 BJT Kirchoff Model
The BJT can be modeled in the Kirchoff domain using the

well-known Ebers-Moll model (EMM) [53]. The EMM is
depicted in Fig. 3, where the three terminals Base (B), Col-
lector (C), and Emitter (E) are highlighted. The EMM com-
prises two back-to-back diodes, modeled with the Shockley
Eq. (21), and two current-controlled current sources, with
αf and αr being the forward and reverse common-base cur-
rent gains.

The EMM is mathematically expressed as⎧⎪⎪⎨
⎪⎪⎩

iB + iE + iC = 0

iE = Is1

(
e

vBE
η1 Vt − 1

)
− αr Is2

(
e

vBC
η2 Vt − 1

)
iC = Is2

(
e

vBC
η2 Vt − 1

)
− α f Is1

(
e

vBE
η1 Vt − 1

)
.

(33)

6.2 Generalized WD Model of the BJT
The WD model of the BJT is obtained following

the systematic approach introduced in [21] that allows
us to describe any three-terminal element as a WD
block characterized by a number of ports J that ranges
from 1 to 6. The choice of the most suitable num-
ber of ports J depends on the reference circuit to be
implemented as discussed in [21]. The general six-port
model of the BJT is shown in Fig. 4, where at each
port we connect a Thévenin equivalent circuit. We de-
fine two sets of incident waves aXO = [aBO, aEO, aCO]T

and aXY = [aBE, aEC, aCB]T , with reference port resis-
tance matrices ZXO = diag([ZBO, ZEO, ZCO]) and ZXY =
diag([ZBE, ZEC, ZCB]). Moreover we collect all the waves
incident to the six-port element in the vector a� =
[aT

XO, aT
XY]T .

The implicit nonlinear system of equations in the Kirch-
hoff variables describing the general six-port model is

g(vK , a�) = Pfi (vK ) + Kfv(vK ) + Qa� = 0, (34)

where vK = [vBE, vBC]T , with vBC = −vCB, matrices P, K,
and Q depend on the chosen number of ports J as discussed
in [21], and 0 is a 3 × 1 vector of zeros. The 3 × 1 vec-
tor functions fi (vK ) and fv(vK ) are expressed as a linear
combination of two scalar functions of vBE and vBC, as

fi (vK ) =
⎡
⎣α f − 1 αr − 1

1 −αr

−α f 1

⎤
⎦[

fBE(vBE)
fBC(vBC)

]
(35)

fv(vK ) =
⎡
⎣ 1 0

−1 1
0 −1

⎤
⎦[

vBE

vBC

]
(36)

with

fBE(vBE) = Is1

(
e

vBE
η1 Vt − 1

)
,

fBC(vBC) = Is2

(
e

vBC
η2 Vt − 1

)
.

(37)

In particular, fi (vK ) and fv(vK ) are obtained directly from
the EMM model. In fact, fi (vK ) = [iB, iE, iC]T equals the
currents flowing out of the terminals shown in Fig. 3, while
fv(vK ) = [vBE, vEC, vCB]T equals the voltages across the
pairs of the BJT terminals.

Since (34) is an implicit system of equations in the vari-
ables vBE and vBC, it is usually solved using the multi-
dimensional Newton-Raphson (MDNR) algorithm [21].
Moreover one of the three equations in (34) is redundant,
since it can be expressed as a linear combination of the other
two, and is discarded before applying the MDNR method.
Removing the redundant equation results in the implicit sys-
tem of two equations with two unknowns gnr(vK , â) = 0,
where â = [â1, â2]T contains the remaining two compo-
nents of the 3 × 1 vector Qa�, and 0 becomes a 2 × 1
vector of zeros [21]. Once vBE and vBC are computed the
waves reflected by the WD element are obtained using the
following two expressions

bX0 = aX0 + 2ZX0[fi (vK ) + HT Z−1
XY(aXY − fv(vK ))]

(38)
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Fig. 4. General six-port WD model of a three-terminal BJT.

bXY = 2vXY − fv(vK ) (39)

where

H =
⎡
⎣ 1 −1 0

0 1 −1
−1 0 1

⎤
⎦ .

6.3 Wave Digital ADAA Model of the BJT
The approach discussed in Sec. 2.2 that applies ADAA

to a multi-port nonlinear element characterized by a mul-
tivariate vector function is not straightforward, since an
integration variable for each vector component needs to
be chosen. Fortunately, in some circuits containing BJTs,
the nonlinear behavior is dominated by certain variables,
making ADAA application to a single integration vari-
able, while keeping the other variables fixed, effective.
However the WD BJT model described by the nonlin-
ear implicit equation gnr(vK , â) = 0 prevents us from di-
rectly using (11). A possible solution is to use a hybrid
WK approach similar to that discussed in Sec. 4.2 but
adapted to the multi-port case. In particular, ADAA is
applied to the nonlinear functions fBE(vBE) and fBC(vBC).
Thus the resulting antialiased versions of the scattering
relations (38) and (39) are

b̃X0 = ãX0 + 2ZX0[f̃i (vK ) + HT Z−1
XY(ãXY − f̃v(vK ))]

(40)

b̃XY = 2ṽXY − f̃v(vK ) (41)

where

f̃i (vK ) =
⎡
⎣α f − 1 αr − 1

1 −αr

−α f 1

⎤
⎦[

f̃BE(vBE)
f̃BC(vBC)

]
(42)

and f̃BE, f̃BC are the antialiased versions of fBE and fBC,
respectively, while ãX0, ãXY, f̃v(vK ) are synchronized ver-
sions of the respective vector variables, obtained through
the linear delay filter H(z) described in Secs. 2 and 3.

To obtain the ADAA approximations f̃BE(vBE) and
f̃BE(vBC), we derive two lookup tables fBE,lut and fBC,lut map-
ping â to fBE and fBC, respectively. The proposed procedure
to apply first-order ADAA to the BJT model is reported
below. The first three steps of the procedure are performed
offline.

� Sample the two components of â = [â1, â2]T over
suitable ranges, creating a 2D grid of L × Q points.
The resulting grid is characterized by points with
coordinates (â(l)

1 , â(q)
2 ), with 1 � l � L and 1 � q �

Q. The created grid will be the input space of the
two lookup tables fBE,lut and fBC,lut.

� For each â(l,q) = [â(l)
1 , â(q)

2 ]T , solve the im-
plicit equation gnr(v

(l,q)
K , â(l,q)) = 0 for v(l,q)

K =
[v(l,q)

BE , v
(l,q)
BC ]T using the MDNR and store the values

fBE(v(l,q)
BE ) and fBC(v(l,q)

BC ) in the two lookup tables
fBE,lut and fBC,lut.

� Numerically integrate fBE,lut and fBC,lut with respect
to the variable introducing more aliasing (either â1 or
â2), tabulating the values of the first-order antideriva-
tives in the lookup tables FBE,lut,1 and FBC,lut,1.
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out
in

Fig. 5. Circuit schematic of the diode clipper stage.

� At each discrete-time step k, ADAA can be applied
using an approach mathematically analogous to (11)
but employing interpolating functions based on the
derived lookup tables.

The generalization of the above procedure to pth-order
ADAA is straightforward and only minor adjustments need
to be made. In fact pth-order ADAA is obtained by nu-
merically integrating p times the lookup tables FBE,lut,1 and
FBC,lut,1 and applying the arbitrary-order formulas given in
[30] to (42). Timing issues arising when applying p-th-
order ADAA to stateful WDFs are handled by using a pth
order synchronization filter Hp(z), like the one in Eq. (13),
and by properly adjusting the coefficients of the modified
scattering matrix S̃, as detailed in Sec. 3.

7 EXAMPLES OF APPLICATION

In this section we describe WDF implementations of
three audio circuits and show the effectiveness of the pro-
posed ADAA methods in terms of aliasing reduction. The
first WD structure implements an audio clipper circuit and
its nonlinearity is a one-port model of a pair of identical
antiparallel diodes. The second WD structure implements
a modded Tube Screamer clipping stage based on a pair of
different antiparallel diodes. The third WD structure imple-
ments a common emitter amplifier and it is characterized
by a three-port BJT model. In all three digital implemen-
tations the reference sampling frequency will be fs = 44.1
kHz.

7.1 Audio Diode Clipper Circuit
Digital emulations of clipping and limiting musical cir-

cuits often generate severe aliasing distortion. This class
of waveshaping circuits is commonly encountered in gui-
tar distortion and overdrive effects and many different VA
implementations have been discussed in the literature [2,
15–17]. A common example of clipping stage is the cir-
cuit shown in Fig. 5. The circuit is composed of an RC
filter, with a resistor R1 = 1 k� and capacitor C1 = 33
nF, and two antiparallel diodes that “clip” the voltage sig-
nals whose amplitude exceeds approximately ± 0.7 V. The
corresponding WDF realization is shown in Fig. 6. It is
characterized by a parallel three-port adaptor P1 that is im-
plemented as in traditional WDFs [35]. The input signal has
been modeled through a WD resistive voltage source, using
R1 as its series resistance. The two antiparallel diodes are
grouped together as a one-port nonlinear element placed

in

1

Fig. 6. WDF implementation of the diode clipper.

at the root of the BCT structure and characterized by the
explicit relation (27). In particular, first-order ADAA is em-
ployed by using (4) in conjunction with (28). Second-order
ADAA instead uses (12) along with the first and second-
order antiderivatives (28) and (29). Moreover care must be
taken when numerical ill-conditioning occurs, as specified
in [30].

The circuit has been tested with a sinusoidal input volt-
age Vin(t) = 10 sin(2πf0t) with frequency f0 = 1,244.5 Hz.
The magnitude spectra of the trivial implementation (i.e.,
without antialiasing) of the diode clipper circuit as well
as those obtained with ADAA filters are shown in Fig. 7.
Harmonic components are highlighted with an ‘x’ while all
the other spikes in the spectrum correspond to aliased com-
ponents. Fig. 7 shows how ADAA efficiently suppresses
aliased components especially at lower frequencies. How-
ever it is worth recalling that high-frequency disturbances
are often inaudible due to auditory masking effects. More-
over results show that a × 2 oversampling for the ADAA is
sufficient to obtain suppression of aliased components com-
parable to non-antialiased implementations with higher (×
6) oversampling factors, especially employing the second-
order ADAA method.

A possible metric to measure the suppression of the
aliased components with respect to desired harmonic distor-
tion components of the clipping stage is the Signal-to-Noise
Ratio (SNR), here defined as a power ratio between the de-
sired harmonic components and the aliased components.
The SNR analysis has been performed as described in [25,
31] for a set of sinusoidal inputs at different fundamental
frequencies, ranging from 1 kHz to 10 kHz. For each test
signal an ideal alias-free version was obtained by calculat-
ing the discrete-time Fourier transform at integer multiples
of the fundamental frequency up to the Nyquist frequency
and using additive synthesis. The ideal signal was then sub-
tracted from the aliased signal to obtain the residual (i.e.,
the aliasing distortion). Since in audio applications SNR
is only meaningful at audible frequencies all signals were
low-pass filtered with cut-off frequency 18 kHz before SNR
calculation. In Fig. 8 OS indicates the oversampling factor
that multiplies the reference sampling frequency fs = 44.1
kHz and p indicates the ADAA order; trivial refers to the
output signal obtained with no ADAA application.

7.2 Tube Screamer Clipping Stage
The Tube Screamer is one of the most famous overdrive

guitar pedals, characterized by a tube-like distortion and an
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Fig. 7. Diode clipper spectra employing different ADAA orders p
and oversampling factors OS, with reference sampling frequency
fs = 44.1 kHz and a sinusoidal input of frequency 1,244.5 Hz and
amplitude 10 V.
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Fig. 8. Diode clipper SNR analysis.
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Fig. 9. Circuit schematic of the modded Tube Screamer clipping
stage.
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Fig. 10. WDF implementation of the modded Tube Screamer
clipping stage.

emphasis on the mid frequencies. The clipping stage of the
Tube Screamer is the main responsible for the introduced
harmonic distortion. A common mod consists of substi-
tuting one of the stock (identical) diodes in the feedback
loop with a slightly different one. This process results in
asymmetrical clipping and even order distortion.

We propose a WDF implementation of a modified Tube
Screamer clipping stage, which employs a 1N914 diode
and a 1N4001 diode in an antiparallel configuration. The
reference circuit schematic is depicted in Fig. 9 while its
WDF implementation is shown in Fig. 10. Circuit param-
eters are listed in Table 2. In this example the operational
amplifier (opamp) has been modeled by using a circuit-
theoretic two-port element called nullor, following the ap-
proach proposed in [38]. The nullor-based opamp model is
then absorbed in the non-reciprocal scattering junction R
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Table 2. Tube Screamer clipping stage parameters.

Element Value Element Value

R1 10 k� C1 1 μF
R2 51 k� C2 51 pF
Rdist 500 k� C3 47 nF
R3 4.7 k� Is,1 2.52 nA
Rout 1 M� η1 1.752
Rg 0.15 � Is,2 2.6 μA

η2 1.6

as explained in [39]. Such a junction is characterized by the
following scattering matrix SR derived as discussed in [38]

SR =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
2(Z3 Z4+Z3 Z5+Z4 Z5)

−Z5(Z3+Z4) −1 −2Z4
Z3+Z4

−2Z3
Z3+Z4

2Z3 Z4
Z5(Z3+Z4)

2Z3 Z4
Z5(Z3+Z4) 0 2Z4

Z3+Z4
− 1 2Z3

Z3+Z4

−2Z3 Z4
Z5(Z3+Z4)

2Z3 Z4
Z5(Z3+Z4) 0 2Z4
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2Z3
Z3+Z4

− 1 −2Z3 Z4
Z5(Z3+Z4)

2 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

where Z3 = R2 + Rdist and Z1, Z4, and Z5 are the free
parameters of the adapted ports of the junctions P2, P1, and
S2, respectively. Moreover the adaptation ofR is performed
by setting Z4 in such a way that the 4th diagonal entry of
SR goes to zero (i.e., Z4 = Z3).

Diodes D1 and D2 are grouped in a single one-port non-
linear element, as done in the implementation of the audio
clipper in the previous subsection. Since D1 and D2 are dif-
ferent, an explicit WD domain scattering relation between
the port variables is not available. Hence the WD ADAA
model described in SEC. 5.1.3 is used, where D1 is the
1N914 diode, and D2 is the 1N4001 diode. The implicit
nonlinear function is evaluated offline in order to perform
tabulation and considering 1,024 values of a in the range
[ − 10; 10] V and using spline interpolation during the
lookup. Fig. 11 shows the aliasing reduction in response to
a sinusoidal input of amplitude 0.2 V and frequency 1,224.5
Hz for different combinations of oversampling factors and
ADAA orders p. Fig. 12 shows the SNR analysis for some
sinusoidal inputs of amplitude of 0.2 V and fundamental
frequencies ranging from 1 kHz to 10 kHz. The application
of ADAA causes an aliasing reduction comparable to the
example presented in the previous subsection. Therefore the
results suggest that the two different ADAA approaches are
comparable in terms of performance.

7.3 Common Emitter Amplifier
As a last example we propose a WDF implementation of

a common emitter amplifier with a BJT, whose schematic
is shown in Fig. 13. Circuit parameters are listed in Table
3 and the resulting WDF structure is shown in Fig. 14. In
this example we employ the ADAA technique for multi-port
BJTs introduced in SEC. 6.3, employing spline interpolation
during the lookup. In particular we model the BJT as a three-
port element with ports BO, EO, and CO. The WD element
is described by the implicit system of equations (34), from

0 0.5 1 1.5 2

104

-100

-50

0

0 0.5 1 1.5 2

104

-100

-50

0

0 0.5 1 1.5 2

104

-100

-50

0

0 0.5 1 1.5 2

104

-100

-50

0

0 0.5 1 1.5 2

104

-100

-50

0

0 0.5 1 1.5 2

104

-100

-50

0

Fig. 11. Tube Screamer clipping stage spectra employing different
ADAA orders p and oversampling factors OS, with reference sam-
pling frequency fs = 44.1 kHz and a sinusoidal input of frequency
1,244.5 Hz and amplitude 0.2 V.
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Fig. 12. Tube Screamer clipping stage SNR.
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Fig. 13. Circuit schematic of the common emitter amplifier.

Table 3. Common emitter amplifier parameters.

Element Value Element Value

Rin 1 k� Cin 50 μF
R1 27.35 k� CE 100 μF
R2 2.65 k� C2 10 μF
RE 220 � Is1 10.05 fA
RC 1.78 k� Is2 13.33 fA
Rout 1 k� η1, η2 1.5
B1 18 V αr 0.75

αf 0.995

in

out

in

E E

C

in

BO

EO

CO

Fig. 14. WDF implementation of common emitter amplifier.

which we remove one redundant equation, obtaining

gnr(vK , â) =
[

1 −ZEO
ZBO

0
0 1 −ZCO

ZEO

]
fi (vK )+

+
[ −1

ZBO
0 0

0 −1
ZEO

0

]
fv(vK ) +

[ aBO
Z BO

− aEO
ZBO

aEO
ZEO

− aCO
ZEO

]
= 0.

(43)

Moreover only one of the two scattering relations (38) and
(39) is necessary and it simplifies to

bX0 = aX0 + 2ZXOfi (vK ). (44)

In the common emitter amplifier circuit the BJT nonlinear
behavior is dominated by the variable â1 that introduces
far more aliasing than â2. This fact allows us to use the
methodology described in Sec. 2.2, i.e., integrating both

Fig. 15. Common Emitter Amplifier spectra employing different
ADAA orders p and oversampling factors OS, with reference sam-
pling frequency fs = 44.1 kHz and a sinusoidal input of frequency
1,046 Hz and amplitude 0.6 V.

nonlinear functions fBE and fBC with respect to â1, and
use the ADAA model described in Sec. 6. Thus ADAA is
applied as

b̃X0 = ãX0 + 2ZXO f̃i (vK ). (45)

The effect of ADAA is shown in Fig. 15, where the spec-
tra of the output signal Vout are obtained by feeding the
circuit with a sinusoidal input with frequency 1,046 Hz
(corresponding to a C6 note) and amplitude 0.6 V. Also
in this case the results show a significant aliasing reduc-
tion; indeed, alias harmonics are almost completely elimi-
nated when first-order ADAA is employed together with an
oversampling factor × 2. The results of the SNR analysis
are shown in Fig. 16 using sinusoidal inputs with various
frequencies ranging from 1 kHz to 10 kHz and with an
amplitude of 0.6 V.
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Fig. 16. Common Emitter Amplifier SNR.

8 CONCLUSIONS AND FUTURE WORK

In this paper we showed how to integrate arbitrary-order
ADAA methods into stateful WDFs with a single one-port
or multi-port nonlinear element. The results show good
aliasing suppression performance even with low oversam-
pling factors. It is worth noticing that the proposed ap-
proach for applying ADAA to digital nonlinear electrical
networks fully preserves the modularity properties of tradi-
tional WDFs. It is indeed straightforward to change/replace
the WD ADAA model of the nonlinear element, with no
need for redesigning the rest of the WD structure. On the
other hand once an ADAA WD model of a reference non-
linear element (e.g., diode or pair of diodes in antiparallel)
has been derived it can be reused for implementing different
circuits containing the same nonlinear element.

As far as drawbacks of ADAA filters are concerned it is
worth recalling that their response is not spectrally flat, and
in particular their inherent low-pass filtering effect could
be undesirable. Even if this effect could be easily compen-
sated employing a linear filter, additional spectral shaping
could be introduced when the method is applied to state-
ful systems. The remedy to such spectral shaping is mild
oversampling that limits the introduced distortion while
maintaining superior antialiasing performance [33].

As a future work we will investigate techniques for the
application of ADAA to WD structures with multiple non-
linearities. The problem of managing multiple nonlineari-
ties using ADAA in the WD domain could be approached
in different ways. A first approach would be to develop an
ADAA model for each nonlinearity and then solve the re-
sulting delay-free-loops. Another possible approach could
be to collect all nonlinear elements into a single multi-port
nonlinearity and then apply ADAA to such a single multi-
port nonlinearity, similarly to what we have shown in Sec. 6
discussing the WD ADAA model of the BJT. In both cases
a systematic procedure for efficiently solving the resulting
system of implicit equations needs to be developed.
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