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Musical dynamics are often central within pieces of music and are therefore likely to be
fundamental to the live event listening experience. While metrics exist in broadcasting and
recording to quantify dynamics, such measures work on high-resolution data. Live event sound
level monitoring data is typically low-resolution (logged at one second intervals or less), which
necessitates bespoke musical dynamics quantification. Live dynamic range (LDR) is presented
and validated here to serve this purpose, where measurement data is conditioned to remove song
breaks and sound level regulation-imposed adjustments to extract the true musical dynamics
from a live performance. Results show consistent objective performance of the algorithm, as
tested on synthetic data as well as datasets from previous performances.

0 INTRODUCTION

Sound level monitoring and management at live events
is becoming increasingly important with the ongoing in-
troduction of prescriptive sound level regulations [1]. The
motivation of many regulations is twofold: protecting au-
dience members from hearing damage and minimizing an-
noyance in the local community. This is the first of a trio of
papers aimed at developing a more robust understanding of
the effect of sound level monitoring practices on regulation
compliance as well as the audience experience.

It is well-known that dynamics can be effectively used for
musical expression [2]. Following this, one of the more ex-
citing aspects of live music is likely to be the dynamic nature
of the reinforced sound. In line with the current emphasis
on the “democracy of sound,” a situation in which every
audience member receives the same excellent listening ex-
perience, it is critical to ensure that strong, high-quality
sound is delivered to every seat in a venue. Useful quanti-
fiers in this regard include intelligibility, clarity, broadband
magnitude response, and dynamic range [3,4]. Along these
lines, modern audiences have come to expect a strong tactile
response, which is directly related to wide dynamic range
low-frequency reinforcement [5].
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As such it’s important to quantify dynamic range in a live
music environment. The question is how to best process and
analyze the incoming data to give an accurate and reliable
indicator of musical dynamics?

This paper details research into a novel musical dynam-
ics metric specifically developed for sound reinforcement
applications. The focus is exclusively on the objective de-
velopment of such a metric in this instance. While a sub-
jectively tuned metric would be ideal, it must be noted that
the most notable techniques for analyzing dynamic range
in music have been previously found to provide poor corre-
lation between objective and subjective data [6], although
further research is required to fully validate this notion.

Research detailed in the proceeding two papers in this
series focuses on the impact of sound level regulations on
the audience experience at live events. Such an analysis
requires a musical dynamics metric to provide a robust and
repeatable analysis of recorded data to identify significant
objective effects of specific sound level regulations.

A review of relevant literature in the field is presented
in Sec. 1, including a justification for a new metric of this
variety. Sec. 2 describes the proposed algorithm, while Sec.
3 details verification of the algorithm using synthetic data as
well as sound level monitoring data collected by the authors.

J. Audio Eng. Soc., Vol. 69, No. 11, 2021 November



PAPERS

The paper concludes in Sec. 4, including suggestions for
further work in this area.

1 BACKGROUND

There has been a steady stream of research related to
program content dynamics over the past few decades, pri-
marily focused on broadcast media [7-9] and recorded mu-
sic [6,10-14]. Two previous case studies by the authors are
the only known formally published research that analyzes
musical dynamics at live events [15,16].

1.1 Loudness Range

The International Telecommunications Union (ITU)
Recommendation ITU-R BS.1770-4 [7] sets out clear
guidelines on how to quantify the loudness of broadcast ma-
terial. The European Broadcast Union supplemented their
recommendation in this area (EBU R128 [8]), which was
largely based on the ITU recommendation, with EBU-Tech
3342, adescription of an algorithm to quantify the so-called
Loudness Range (LRA) [9]. LRA measures the loudness
variation (in loudness units, LU) over a macroscopic time
scale. The algorithm is not to be confused with more com-
monly quoted metrics such as dynamic range or crest factor.

As broadcast loudness levels can’t be assumed to fol-
low any conventional statistical distribution, nonparamet-
ric statistical analysis is required. In the case of LRA (and
most other related metrics), a percentile-based analysis was
adopted [9]. LRA is defined as the difference between the
95" and 10™ percentiles, where anything below the 10"
percentile is considered non-program material (background
noise or silence), while anything above the 95" percentile
is treated as an anomalous aural event, such as a single
gunshot or an explosion in a film.

Critically, LRA operates on a cascaded gating method.
First an absolute threshold is applied, always at —70 LUFS,
to remove non-program material in the signal. Second a rel-
ative threshold is applied 20 LUFS below the absolute gated
loudness level. This removes uncharacteristically quiet sec-
tions of a program that would otherwise artificially elevate
the LRA reading [9]. The analysis is carried out using a
sliding three second analysis window. Test signals along
with a full code listing of the algorithm are provided in the
EBU technical supplement [9].

1.2 Dynamic Spread

LRA operates on a gated percentile range of loudness
levels. It can be argued that this may inadvertently overlook
key details within the dynamics of program material. This
prompted the development of Dynamic Spread (DS) [10].
DS was formulated based on three desirable characteristics,
namely that the metric should

1) be unaffected by global gain adjustments,

2) show identical scaling when all individual compo-
nents are identically scaled, and

3) be based on all analysis frame values.

J. Audio Eng. Soc., Vol. 69, No. 11, 2021 November

SOUND LEVEL MONITORING: LIVE DYNAMIC RANGE

The DS is generally defined as

»
)

ey

=

DS = (ﬁ Z |Vap ) — V|”>

i=0

where dynamic spread, DS, is calculated over M analy-
sis frames, using the absolute difference between the RMS
voltage expressed in decibels (V) and the mean V5 value,
V, over all analysis frames. The influence of outliers within
the dataset is controlled by the constant, p. Higher values
result in greater influence of outliers. In the original study
[10] it was found that p = 1 was ideal, corresponding to the
mean absolute deviation of the V,;p values. DS therefore
includes all values within each analysis frame in its char-
acterization of program material dynamics, as opposed to

loudness range where dynamics are calculated based on the
gated extremes.

1.3 Higher-Order Statistical Analysis

As noted in the formulation of DS, it could be problem-
atic if program dynamics are restricted to a straightforward
percentile analysis [10]. A solution to this potential issue
involves higher order statistical analysis. Such analysis has
been carried out by several researchers, all principally fo-
cused on musical signals [11-14].

The majority of such research led to a focus on skewness
and kurtosis of the histograms of level distribution in partic-
ular pieces of music [11-13]. In short skewness indicates
any noncentral tendency of a measurement’s sound level
distribution, while kurtosis indicates the nature of the peak
and tails within the sound level distribution data [13]. Such
metrics could prove invaluable as it is theoretically pos-
sible to arrive at identical values from differently shaped
histograms using a percentile range analysis. While it is not
yet understood if or how these measures relate to human
perception of music (many of these metrics appear to be
largely uncorrelated with subjective ratings [6]), from an
objective viewpoint care must be taken not to inadvertently
discard valuable data, and therefore such analysis should
be considered in any robust analysis of program material
dynamics.

1.4 Relevance to Sound Reinforcement

Each of the aforementioned studies [10-14] focuses on
broadcast or recorded material, where it is commonplace
to have access to high-resolution data (sampling rates at or
above 44.1 kHz). Considering sound level monitoring at live
events, it is common to only have access to low-resolution
data (logged at one second intervals or less), making the
aforementioned analysis methods unsuitable.

Sound level monitoring packages beyond basic sound
level meters operate using equivalent continuous sound
pressure level (L.;) as defined by Eq. (2) for instances
where discrete samples are used [17].

1
Leq,T = 1010g10 <? Z Tiloo.lLeq.T,-) (2)
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where L., is calculated based on the L., time frame, 7, the
sampling period of the discrete Ly calculation, 7;, and the
L., for each individual sample L., 7;.

In live event applications, it is now standard practice
for the base-level L., measurement time frame to be 1 s
(Laeg,1sec and Lceg, 15ec) [18]. Although it is theoretically
possible to process the incoming data at higher resolutions,
existing software distills the input data into L, i4. points to
limit requirements for processing power and memory (it is
often a requirement to store tamper-proof log files of sound
level data from an event. One-second resolution results in
file sizes of a few MB as opposed to a few GB for higher
resolution data).

With this restriction in mind (especially considering that
all existing verified sound level monitoring data is low-
resolution), any analysis of live event dynamics will be un-
able to directly implement the previously described tech-
niques. Instead, a bespoke method should draw on best
practice from what has come before.

1.5 Further Challenges

During a live event, it is common for an L., limit to be in
place. The sound engineer will often have to adjust the over-
all level (often using the master fader, VCA/DCA faders,
individual channel faders, compression, equalization, or a
combination of multiple techniques) to ensure compliance
with the limit. The process of a sound engineer lowering
the level to comply with a limit could artificially increase
any measure of dynamics at an event.

For example if a band starts playing with a sound pres-
sure level (SPL) constrained to within £5 dB, this will give
a simplified dynamic range of 10 dB. If the engineer has to
reduce the output of the mix by 3 dB, however, a conven-
tional analysis could identify the simplified dynamic range
of the music as 13 dB, which is incorrect.

An example of this was observed in previous work in this
area, where a case study was conducted on measurement
data collected at a large outdoor music festival [15]. On
the Saturday of the festival, there were two indie rock acts
performing back-to-back. The first act started their perfor-
mance with an SPL above the local limit (96 dB Lacg, smin)-
This resulted in the sound engineer having to decrease the
playback level a few songs into the set. Additionally the
act had long breaks between songs, which were included
in the musical dynamics analysis. The resulting dynamic
range (calculated based on the raw data using L10 — L90,
the difference between the Ly, jsec value exceeded 10% of
the event and L 4.q, 150c Value exceeded 90% of the analysis
duration) was 18.0 dBA.

The following act was similar in musical style to the
first act, but this act’s engineer complied with the sound
level limit for the duration of the performance, and the
act had minimal breaks between songs. This resulted in
a dynamic range of 7.9 dBA. While both acts provided a
similar musical listening experience, there was over 10 dB
difference in the calculated dynamic range (Fig. 1). This
was due to the adjustments by the first sound engineer as
well as the inclusion of breaks between songs in the data
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Fig. 1. Example of inaccuracies in musical dynamics due to adjust-
ments for sound level limit compliance (left: first band with long
song breaks and necessary overall level adjustments, right: second
band with minimal song breaks and no overall level adjustments
required). Adapted from [15].

analysis. It is not a true reflection of the dynamic content
of the music.

One solution is to analyze dynamic range in short time
frames (such as on a song-by-song basis or with a sliding
analysis window as in [9]) and take an average across an
entire performance. This would require manual tagging of
song starts and finishes within a set and could prevent cap-
turing long-term dynamic progression of the music over an
entire performance. Another option is to automatically re-
move level adjustments by the sound engineer (in response
to the imposed sound level limit) and song breaks, thus
focusing the analysis on an act’s musical dynamics.

Of the two options, the latter is more appropriate because
it can handle sound level regulation-imposed adjustments
at any point in a performance, even within a single song
(which is often when the engineer makes adjustments). It’s
critical that any such engineer-based level adjustments don’t
impact the musical dynamics calculation but equally impor-
tant that adjustments by the engineer directly contributing to
the musical listening experience of the audience are main-
tained.

2 LIVE DYNAMIC RANGE

Drawing on the EBU’s loudness range metric [9], a novel
metric targeting sound reinforcement applications was de-
veloped, termed live dynamic range (LDR). LDR is based
on L3 — L90 (i.e., the difference between the L.y jsc val-
ues exceeded 3% and 90% of the analysis duration, re-
spectively). This suppresses any spurious peaks in the data
(such as bumps into the measurement microphone) as well
as ambient noise between songs (which aligns with back-
ground noise in BS 4142 [17]). L3 was chosen to balance the
importance of sharp transients in live sound and spurious
readings that would skew the results. Initial testing indi-
cated that LDR was inconsistent when using percentiles
higher than the 97", This choice sits approximately in the
middle of upper percentiles explored in the literature: 99"
in [13],97.7" in [19], and 95% in [9].

Prior to the LDR calculation, the measurement data must
be conditioned because the data will inherently contain
nonprogram information (i.e., data points where there is
no musical content). These points must be removed be-
fore calculating LDR; otherwise, LDR will be artificially
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inflated. Nonmusical data points are identified using Lc.,
data (ideally in one second intervals, although longer inter-
vals can be used, if necessary). Lceq data is used because
nonmusical content (audience noise, stage banter) generally
does not contain significant low-frequency content and will
therefore present a clear distinction between periods during
a performance for most musical acts. It is critical that any
measurement microphone used for LDR monitoring has an
appropriate wind screen to avoid excessive low-frequency
wind noise.

As with the EBU’s loudness range algorithm, thresh-
olding is used to suppress nonmusical content. A mask is
generated from an Lc,,, threshold based on the difference be-
tween the root mean square (RMS) of Lceq and the standard
deviation over the data set (Eq. (3)). The mask is generated
by comparing the threshold to the raw data (with Gaussian
smoothing applied over a 30-s interval). Any time periods
falling under the threshold are subsequently removed from
the data to ensure only musical content is included in the
LDR calculation (Egs. (4) and (5)).

k= LCeq,lsec,RMS — OLceq 15ec 3
. 1 ifLCeq,lsec >k

Mipr = {O otherwise @

XM = Xraw © MLpR 5

where the raw data, x,,,, is masked by My pr which is
set using threshold, k, based on the RMS and standard
deviation of the Lceg, 15ec data, Leeg, isec,rms and Opceq, isecs
respectively. This results in masked data, x,,.

After nonmusical content has been removed from the
data, the measurements are processed to suppress nonmu-
sical dynamics, which generally stem from the sound en-
gineer adjusting the overall level of the sound system (not
individual instruments) to comply with sound level regu-
lations. Such dynamics in the measured data are relatively
slow, whereas the musical dynamics are generally rapid
in nature. Within the LDR algorithm nonmusical dynam-
ics are considered fluctuations in the equivalent continuous
sound pressure level (L., and Lc,,) that take greater than
3 min to be fully realized. It must be emphasized that the
contributions by the sound engineer are essential to the
musical listening experience of the audience. Only level
adjustments in relation to the imposed sound level limit
should be filtered from the data.

The masked data is processed to remove nonmusical dy-
namics using a second order Butterworth highpass filter
with a cutoff frequency of 1/180 Hz (relating to a period of
3 min), noting that the raw data has a sampling rate of 1
Hz. Once Ly, and Lc,, data have been passed through the
filter, LDR can be calculated using

LDR =1L3 (XM,HPF)—Lgo(xM,HPF)» (6)

where live dynamic range, LDR, is calculated as the differ-
ence between L3 and L90, the equivalent continuous sound
pressure level exceeded 3% and 90% of the measurement
period, respectively, as applied to the filtered and masked
data, XM,HPF-
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Fig. 2. Probability density functions for the synthesized musical
content (solid) and song breaks (dashed)

3 VERIFICATION

The live dynamic range (LDR) algorithm must be verified
before being used. Again, the focus in this research is on
objective performance in the context of musical dynamics
in the presence of various sound level regulations. Any
consideration of subjective correlation to the LDR metric
should be the focus of further work.

3.1 Synthetic Data

The LDR algorithm was first verified with synthesized
data, using parameters informed by existing data provided
by the authors. It was found that both musical content and
song break noise spanned a maximum SPL range of 30
dB. A virtual performance of ten 5-min songs was gener-
ated with 30 s between each song. The synthesized data
was generated using a pseudorandom algorithm with two
Weibull distributions, one for musical content and one for
song breaks.

The principal parameters used when defining a Weibull
distribution are termed scale, which affects the x-axis loca-
tion of the distribution, and shape (i.e., the Weibull slope),
which governs the slope of the resulting distribution [20].
The scales for the musical content and song break noise
distributions were set to mean sound pressure levels of 95
dB and 85 dB, respectively, while the shapes were set to
1,800 and 900, respectively, divided by the maximum sound
pressure range of 30 dB (Fig. 2).

The virtual sound engineer exhibited a master fader ad-
justment range of +2 dB with a maximum adjustment
reached after 20 min. For the simulated data, the engi-
neer’s adjustments followed a sinusoidal pattern. L., data
were defined as 10 dB above the synthesized L., data. As
LDR is effectively blind to absolute sound pressure level
this arbitrary choice is inconsequential.

First, the mask (M, pg in Eq. (4)) was generated to re-
move nonmusical content (audience noise and stage banter
during song breaks) from the data. As described in Sec. 2,
this was carried out with L¢,, data (Fig. 3).

The masked data (xp; in Eq. 5) was passed through a
highpass filter to remove the engineer-related dynamics, re-
sulting in data consisting only of musical content, x; gy pr
(Fig. 4). Note that the data was zero padded by 12,000 sam-
ples, with all inserted samples set to the calculated thresh-
old, k, at the beginning of the data set to avoid distortions
at the start of the L, s filtered data due to the filter’s
impulse response.
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Fig. 3. Example synthesized L¢., data (x.4,), musical content

threshold (k) and the resulting nonmusical content mask (M pg)
as part of the live dynamic range (LDR) algorithm.
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Fig. 4. Example synthesized Lc., with nonmusical measure-
ment points removed, pre-filtering (x),, grey) and post-filtering
(xm,mpF, black).

Table 1. Synthesized variable allowable ranges during
randomized testing

Parameter Allowable range
SPL range (songs) 10-50 dB

SPL range (audience) 10-30 dB
Number of songs 5-15 songs
Minutes between songs 0-1 min
Minutes per song 3-8 min

Mean SPL (songs) 85-105 dB
Mean SPL (audience) 60-80 dB
Master fader adjustment range +0-3dB
Master fader rate of adjustment 0-1 mHz

SPL = sound pressure level.

The filtered data shows the removal of low-frequency
fluctuations in SPL as well as the DC offset, which repre-
sents the mean Lc,,. For this particular set of synthesized
data, LDR was calculated to be 5.52 dB (A- and C-weighted
LDR are identical here as the L, data were directly gen-
erated from the Ly, data).

As the LDR algorithm operates between the 10" and 97™
percentiles of L, data, the LDR with the Weibull distributed
data should result in a value of 5.50 dB. The calculated
LDR exhibited a difference of 0.02 dB (0.36% error) to the
expected value.

To further validate the LDR algorithm using synthesized
data, different combinations of settings were tested. Ten
thousand configurations were explored in which the settings
for the synthesis variables were randomized according to
Table 1. True versus calculated LDR values are analyzed in
Fig. 5.
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Fig. 5 Comparison of the calculated vs. true LDR values for 10,000
randomly generated synthesis configurations. LDR = live dy-
namic range.
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Fig. 6 Example nonmusical mask generation for real-world data
collected at a music festival in 2019.
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Fig. 7 Example musical data filtering for real-world data collected
at a music festival in 2019.

The algorithm accurately calculates LDR, with a root
mean squared error of 0.025 dB. The most significant er-
ror is observed for trials where there is substantial overlap
between the mean song level and audience level, thus pre-
venting the algorithm from removing all song break data.
The maximum LDR error within these tests was 1.04 dB
(corresponding to an error of 11.3%).

3.2 Single Music Festival (Leg 1sx)

The LDR algorithm was next tested on real-world data
taken at a music festival in 2019 [15]. A single band’s
performance data are shown in Fig. 6, highlighting the ap-
plication of the nonmusical content mask, and in Fig. 7,
revealing the data after highpass filtering. In this instance
the A- and C-weighted LDR values were calculated as 7.57
dBA and 6.44 dBC, respectively (the act was a three-piece
funk band).

For A- and C-weighted LDR, the observed ranges over
all 23 acts at the festival were 5.50-12.03 dBA and 5.09—
14.15 dBC, respectively. As the LDR algorithm ignores the
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Fig. 8 Comparison of original live dynamic range calculation (L10
—L90) and the new LDR algorithm using data from the 2019 music
festival. LDR = live dynamic range.

top 3% and bottom 10% of the L.y range, these results
indicate that all acts generally stayed within a controlled
operating range of sound levels, with dynamics expressed
in short time intervals. This is consistent with previous
findings [15,16].

As a final examination of the improved LDR algorithm
(as compared with more basic methods outlined in the pre-
vious study [15]), each act from the 2019 festival was re-
analyzed with the LDR algorithm and directly compared
with the original approach (which had no mechanism to
exclude song breaks and sound level limit-related adjust-
ments). A comparison between the two approaches is pro-
vided in Fig. 8, with the L10 — L90 and LDR histograms
reproduced in Figs. 9 and 10. For completeness, the fully
conditioned LDR histograms, including higher-order statis-
tics, as described in Sec. 1.3, are provided in Fig. 11. The
missing plots in Figs. 9-11 indicate cancelled performances
due to adverse weather conditions at the festival [15].

The comparison between the two data sets in Figs. 9
and 10 highlights the importance of removing nonmusical
data before analyzing music dynamics from a live event.
In many cases, there is a significant (greater than 10 dB)
left tail to the histograms due to the song break data being
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included in the analysis. This skews the dynamics analysis,
giving an inaccurate assessment of reality.

The L10 — L90 calculations from the original case study
[15] show musical dynamics approaching 30 dBC in some
cases. After the LDR algorithm was applied the maximum
level of musical dynamics observed is just above 14 dBC.
The C-weighted comparisons are more pronounced than the
A-weighted comparisons because the song breaks typically
have minimal low-frequency content, creating an artificially
inflated dynamic range of the raw data, which bears no
significance to the musical content.

The analysis presented in Fig. 11 allows for inspection of
higher-order statistics, namely skewness (y;, where nearly
all analyzed performances show a positive value indicating
a longer tail in the positive direction—a tendency for am-
plitude peaks) and excess kurtosis (y,, where most values
are clustered around zero, indicating a tendency towards a
normal distribution. Positive values highlight a sharp peak
and more significant tails, whereas negative values indicate
the opposite).

Upon examining these statistics, it was determined that
LDR was adequate as an independent measure of live mu-
sical dynamics, without the need for higher-order statistical
modifiers. In all observed instances, LDR adequately cap-
tured the dynamic spread of the data.

3.3 Single Music Festival (L., 1mn)

The LDR algorithm’s performance must be analyzed
when L, ;s data aren’t available. While not ideal, Leg, 1min
data are often all that is available in certain sound level mea-
surement log files [16]. Loy, 1min data aren’t ideal for LDR
calculations as they lack the appropriate time resolution to
track musical dynamics. It is also likely that song breaks
will be overlooked in the analysis unless they are on the
order of 1 min or longer.

As a starting point, the same data displayed in Figs. 6 and
7 were inspected using Ley, min data rather than the original
Ley, 15ec data (Figs. 12 and 13). The L.y, 1nin LDR was 5.22
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Fig. 9 L10 — L90 (old) and LDR (new) A-weighted histogram analysis for each act from the 3-day festival in 2019 (grey traces =
histogram of raw data, black traces = histogram after removal of song breaks). LDR = live dynamic range.
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histogram of raw data, black traces = histogram after removal of

dBA and 3.70 dBC (the Ly 1 LDR was 7.57 dBA and
6.44 dBC), considerable underestimates.

To provide a clearer picture of LDR using 1-min data, a
comparison can be performed between 1-min and 1-s data
over all 23 acts from the 2019 dataset (Fig. 14). The A-
and C-weighted LDR comparison root mean squared errors
were 2.10 dBA and 2.66 dBC, respectively. This confirms
the notion that the 1-min data lack much of the musical
dynamics captured in the 1-s data.

While this shows a somewhat satisfactory match to the
expected 1:1 input-to-output relationship, the specific data
show considerable inaccuracies. It is clear from this analy-
sis that 1-min data should only be used if absolutely neces-
sary; 1-s L, data are ideally suited to fully capture musical
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dynamics. Informal testing of intermediate sampling rates
was carried out, giving some indication of accurate results
when taking a sample every 3 s, but further work is neces-
sary to precisely determine the actual lower sampling limit
for LDR.

3.4 Multiple Outdoor Events

Measurement data spanning 137 outdoor music events
in Europe from 2019 courtesy of one of the authors were
analyzed using the LDR algorithm to further inspect the
handling of 1-min data (both L, 7sec and Leg, 1in Were avail-
able here). The events ranged from electronic dance music
(EDM) festivals to softer contemporary rock performances.
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Fig. 12. Example nonmusical mask generation for real-world data
collected at a music festival in 2019.
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Fig. 13. Example musical data filtering for real-world data col-
lected at a music festival in 2019.

LDR (dBA)
=

LDR (dBC)
=

Ceg,1min
o

L
L

0 5 10 15 0 5 10 15
L LDR (dBA) L LDR (dBC)

Aeq,1sec Ceq,1sec

Fig. 14. Comparison L., i, data (horizontal) and Ly, 1,,i» LDR
calculations over 23 acts within 2019 music festival data set for A-
weighted (left) and C-weighted (right) data. LDR = live dynamic
range.

The observed range of L., 15ec A- and C-weighted LDR
over all events was 2.48-8.82 dBA and 3.99-15.18 dBC,
respectively. The observed range of the Ly jmin A- and
C-weighted LDR over all events was 2.92-8.46 dBA and
3.35-7.63 dBC, respectively. A comparison between LDR
derived from Leg r5ec and Leg, imin data is given in Fig. 15.
The 1-s to 1-min LDR calculations show similar trends to
the 2019 music festival data from Sec. 3.3, in this case with
A- and C-weighted root mean squared errors of 1.18 dBA
and 5.42 dBC, respectively, with a tendency to significantly
underestimate LDR with the C-weighted data.

Overall the LDR algorithm, when used with L, . data,
has been verified to provide an accurate and repeatable
method for analyzing the isolated dynamic range of the
musical content at a live event. Values are expected to re-
main below 20 dB, where an LDR above approximately
8 dB can be considered to represent a performance with
strong musical dynamics, although further work is required
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Fig. 15. Comparison L,y (is.c) data (horizontal) and Ly(iminy LDR
calculations over all 137 events for A-weighted (left) and C-
weighted (right) data. LDR = live dynamic range.

to refine this threshold. The use of Ly 1min data are not
recommended, as this does not provide a robust metric for
musical dynamics at live events.

3.4 Comparison to Other Delivery Formats

As LDR departs from conventional dynamic quantifica-
tion algorithms, due to the suppression of song break data
and sound level limit-imposed adjustments to the level by
the engineer, it is instructive to analyze content delivered
through the mediums covered by other algorithms [6—14],
namely recorded and broadcast music.

To facilitate this, ten example recordings were obtained
from each of the following four categories:

1. Radio (live), live music performed at and broadcast
from a commercial radio station.

2. Radio (studio), recorded music played back and
broadcast from a commercial radio station.

3. Live album, commercial release of a live perfor-
mance recording.

4. Studio album, commercial release of a collection of
studio recordings.

The radio examples were obtained from the Online
Archive, all from past BBC Radio 6 Music shows due to
the station’s regular live music broadcasts. The album ex-
amples were obtained from the primary author’s collection,
all at CD quality (44.1 kHz, 16-bit depth).

Initial analysis gave LDR values around 20 dB (A- and
C-weighted). The lack of background noise was identified
as the cause of this. Datasets A, B, and C show background
noise levels around 50 dBA and 60 dBC. Because LDR
was developed to operate with such noise, it was necessary
to impose artificial background noise on the other example
recordings to permit a fair comparison. In this instance,
uniformly distributed noise was added spanning 25-50 dBA
and 35-60 dBC. All examples were analyzed alongside the
live event datasets (Fig. 16).

Broadcast music exhibits consistently lower LDR com-
pared with the other examples. The consistency of radio’s
LDR is expected as all examples were taken from the same
station, hence all broadcasts had the same compression ap-
plied. The studio examples exhibit higher LDR in some
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Fig. 16. LDR comparison between live events (Datasets A, B, C),
radio- and studio-based music recordings/performances. LDR =
live dynamic range.

cases but lower in others, indicating the wide variety of
mastering techniques between studios. The studio examples
show that some albums have wide C-weighted dynamics,
as compared to any other medium.

The median LDR values for A- and C-weighting are
generally in line with live events, however, indicating that
modern day live performances are achieving similar listen-
ing experiences to what’s delivered by an album (aside from
the visual, tactile, and social/emotional elements of a live
performance).

4 CONCLUSIONS AND FURTHER WORK

Recent developments in the area of live event sound level
monitoring and management have necessitated a closer in-
spection of the impact that sound level regulations have on
the musical listening experience of an audience. Although
the impact on overall sound pressure level can be easily
determined from measurement data, the impact on musical
dynamics isn’t as straightforward to ascertain.

While a number of well-established measures exist
within the broadcast and recorded music industries, these
operate on high-resolution audio, whereas data logged at
live events are generally low-resolution, with a sampling
rate of 1 Hz, at best. This necessitated the development of
the novel LDR metric.

The LDR algorithm identifies and removes any song
break data and then filters the resulting data to remove
engineer-related sound level adjustments (which are not
directly relevant to the musical dynamics). This leaves the
core musical dynamics content within the data, which can
be quantified as L3 — L90.

Further work on LDR requires a thorough investiga-
tion into the subjective relevance of the metric, specif-
ically determining the just noticeable difference in mu-
sical dynamics in a live event setting in order to cali-
brate a subjective scale for LDR values. Additionally, the
LDR algorithm could be explored for implementation in
real-time sound level monitoring applications by imple-
menting a sliding analysis window alongside a cumula-
tive analysis, with appropriate initial conditions for the
masking threshold to provide sound engineers with addi-
tional tools in shaping dynamic and regulation-compliant
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(safe) mixes. To encourage wider participation in further re-
search, the source code for the LDR algorithm is available
at www.soundlevelmanagement.com.

The objective analysis of LDR feeds the investigations
in Parts 2 and 3 of this paper series, whereby various sound
level regulations are inspected using existing captured data
to determine their measurable effect(s) on the objective mu-
sical listening experience of the audience. This knowledge
in turn is used to develop robust methods for sound level
monitoring and management in order to deliver the best
possible listing experience at live events while complying
with sound level regulations.
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