
PAPERSJournal of the Audio Engineering Society
Vol. 65, No. 6, June 2017 ( C© 2017)
DOI: https://doi.org/10.17743/jaes.2017.0016

Robust Acoustic Contrast Control with Reduced
In-situ Measurement by Acoustic Modeling*

QIAOXI ZHU
1, 2

(qiaoxi.zhu@gmail.com)
, PHILIP COLEMAN

3

(p.d.coleman@surrey.ac.uk)
, MING WU

1, 2

(mingwu@mail.ioa.ac.cn)
, AND JUN YANG,

1, 2
AES Member

(jyang@mail.ioa.ac.cn)

1Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing,
100190, China

2University of Chinese Academy of Sciences, Beijing, 100049, China
3Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey, GU2 7XH, UK

Personal audio systems generate a local sound field for a listener while attenuating the
sound energy at pre-defined quiet zones. In practice, system performance is sensitive to er-
rors in the acoustic transfer functions between the sources and the zones. Regularization is
commonly used to improve robustness, however, selecting a regularization parameter is not
always straightforward. In this paper a design framework for robust reproduction is proposed,
combining transfer function and error modeling. The framework allows a physical perspective
on the regularization required for a system, based on the bound of assumed additive or multi-
plicative errors, which is obtained by acoustic modeling. Acoustic contrast control is separately
combined with worst-case and probability-model optimization, exploiting limited knowledge
of the potential error distribution. Monte-Carlo simulations show that these approaches give
increased system robustness compared to the state of the art approaches for regularization pa-
rameter estimation, and experimental results verify that robust sound zone control is achieved
in the presence of loudspeaker gain errors. Furthermore, by applying the proposed framework,
in-situ transfer function measurements were reduced to a single measurement per loudspeaker,
per zone, with limited acoustic contrast degradation of less than 2 dB over 100–3000 Hz
compared to the fully measured regularized case.

0 INTRODUCTION

Personal audio reproduction aims to use a loudspeaker
array to render desired sound to a listening position with
minimal interference to listeners in other regions. Various
methods for sound zone reproduction are discussed and
compared in [1] and [2]. Several of these algorithms are
based on input transfer functions (TFs) between the loud-
speaker array and the control microphones, for example:
acoustic contrast control (ACC) [3], pressure matching [4,
5], planarity control [6], and sound field reproduction ACC
[7]. These systems are vulnerable to perturbations in the as-
sumed TFs, which might result from inconsistencies in the
individual sources’ sensitivities, complexities in the spatial
responses, source position mismatches, and so on [8]. In
addition, sound speed changes caused by variations in, e.g.,
temperature, humidity and airflow, lead to changes in the

*Portions of this paper were presented in Q. Zhu et al., “Ro-
bust Personal Audio Reproduction Based on Acoustic Transfer
Function Modeling,” at the 2016 AES International Conference
on Sound Field Control, Guildford, UK, July 2016.

TFs and eventually lower the system performance [9]. Be-
sides these time-variant perturbations within a reproduction
system, there are also perturbations from system to system,
for example due to variations among loudspeakers of the
same model. Furthermore, it might not always be possible
to conduct in-situ measurements in the zones to calibrate
or adjust installed systems.

In order to reduce performance degradation in TF-based
methods under such conditions, robustness should be care-
fully considered in the algorithm design. Kim et al. [10] and
Elliott et al. [8] applied constraints on array audible gain
or array effort (AE) to increase system robustness. Cole-
man [9] studied the effect and selection of a regulariza-
tion parameter to improve overall performance considering
acoustic contrast (AC), planarity, and AE. These methods
only utilize the characteristics of the array and the applica-
tion geometry, without considering potential errors in the
system. The AE constraints were also employed by Cheer
et al. for practical systems in a car cabin [11] and a mobile
device [12].

Park et al. [13] discussed the relationship between TF
errors and the resulting AC but did not propose a robust
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control solution. Bai et al. [14] incorporated informa-
tion about the errors in the system by using Monte-Carlo
simulations to find the best regularization parameter for a
microphone array. This approach has high computational
complexity and is constricted by the pre-given solution
form, i.e., diagonal loading.

Error-based robust solutions, utilizing both system
geometry and error distribution information, can be
derived by employing different optimization strategies, e.g.,
probability-model optimization (PMO) and worst-case op-
timization (WCO). The concept of utilizing error informa-
tion by PMO and WCO to increase system robustness was
originally investigated for robust beamforming, e.g., [15]
and [16]. For personal audio, Zhang et al. [17] utilized PMO
to achieve robust ACC, assuming multiplicative noise in the
TFs. Cai et al. [18] also studied robust ACC, considering
additive gain and phase variations, using PMO. A special
case of PMO [8] treated the reverberant field above the
Schroeder frequency as diffuse, and increased robustness
by introducing a spatially-averaged mean square uncer-
tainty into diagonal loading regularization. This approach
was experimentally validated in [19]. Cai [20] also applied
WCO to ACC and discussed its relationship to the PMO
approaches. However, the relationship between error-based
methods, such as WCO and PMO, and other regulariza-
tion methods has not been systematically elaborated in the
literature.

In addition to errors in the system, the robust control
performance depends on both the determined part and the
error part of the TF model. The determined part and the
error part should both be modeled accurately for the most
robust performance. This can be realized by incorporating
acoustic modeling. As an example of determined part ad-
justment, Chang et al. [21] and Tu et al. [22] investigated
the incorporation of a rigid sphere model into TFs to help
increase robustness against head scattering effects. In our
previous work [23] we proposed a general framework for
robust sound reproduction making use of acoustic model-
ing to obtain input for error-based robust optimization (i.e.,
PMO, WCO). The acoustic modeling described the ideal
radiation pattern of the loudspeakers to the control points
and additionally represented gain and phase variations in
the TFs with an estimated error model.

In this article we extend our work in [23] with three new
contributions. First, we present new analysis of the problem
of selecting a diagonal loading parameter for robust ACC,
including a method based on the maximum singular value of
the TF matrix. Second, we include experimental validation
results, which evaluate the performance of robust control
techniques in the presence of perturbations introduced to
the loudspeaker gains. Third, we investigate a practical ap-
plication of error modeling to reduce the need for in-situ TF
measurement. Specifically, for each loudspeaker, we make
a single TF measurement to each zone and use a point-
source interpolation and uncertainty model to populate the
remaining rows of the TF matrices.

In Sec. 1 we outline the acoustic-modeling based robust
reproduction framework and provide the robust ACC so-
lutions derived by two optimization strategies (PMO and

WCO). In Sec. 2 the robust performance pattern of a typ-
ical ACC system is analyzed by Monte-Carlo simulations,
which shows the advantage of acoustic-modeling based
methods. Experimental results are presented in Sec. 3, com-
paring robust control strategies when there are errors in the
system due to loudspeaker gain errors and missing infor-
mation in the TFs. We discuss the results in Sec. 4 and
summarize in Sec. 5.

1 METHODS

In this section we first introduce the framework for robust
reproduction based on acoustic modeling. Then, two differ-
ent robust control strategies (WCO and PMO) are applied
to ACC as a typical application of this framework. Finally, a
practical “quick” approach is proposed. The approach uses
the estimated bounds of the errors to determine the control
parameters for robust ACC.

1.1 Framework for Robust Sound Reproduction
Based on Acoustic Modeling

The proposed framework consists of two distinct stages:
acoustic modeling to obtain an acoustic TF model for a real
system with uncertainty and robust design to derive source
weights for robust control. Acoustic TFs from the sources
to the control zones are modeled as source radiation paths
with errors. As shown in Fig. 1, after setting the application
scenario (including the system geometry and the acoustic
environment), a set of spatial impulse responses is acquired
by transfer function measurement. Then in the sound prop-
agation analysis module, the sound field radiated by each
source is modeled as the superposition of a determined
part {G} and a set of potential error {�G} that describes
variations in the TFs for certain reproduction scenarios:

G̃ = G + �G, (1)

where G̃, G and �G are M × L TF matrices, with M control
points in the target zone(s) and L loudspeakers.

To model the determined part, recent technologies for
source radiation measurements and modeling can be con-
sidered, such as holographic nearfield measurements [24]
or sound field separation [25]. In this paper we focus on the
direct radiation paths and consider the room effects to be
errors, although these could additionally be modeled.

The error term obtained in the error estimation module
is a certain probability distribution function p(*) or bound
b(*) describing the variances in TF amplitude and phase due
to potential errors. The error term represents any source di-
rectivity components that cannot be fully represented with
limited resolution measurements and also the spatial re-
sponse variances resulting from non-ideal conditions, e.g.,
the room effect.

With the determined TF matrix G and the error descrip-
tions p(*) or b(*), several error-model-based robust control
strategies can be applied. In the following sub-sections, the
solutions of robust ACC are derived separately for WCO
and PMO.
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Fig. 1. Framework of acoustic-modeling based robust sound re-
production.

1.2 Acoustic Contrast Control
ACC maximizes the ratio of the spatially averaged sound

energy between the listening zone and the quiet zone [3]:

max
wH RLw
wH RQw

, (2)

where w is the L × 1 loudspeaker weight vector to be
obtained, and RL = GH

L GL and RQ = GH
Q GQ are the spatial

correlation matrices defined by TF matrices GL and GQ for
the listening zone and the quiet zone, respectively.

1.3 Worst-Case Optimization
In order to improve the overall performance of ACC ap-

plied to all the predictable situations, WCO [20, 23] aims
to find and optimize the situation giving the worst per-
formance among all the possible variations. Considering
uncertainties in the TFs, the quiet zone spatial correlation
matrix is written as R̃Q = RQ + �RQ, where �RQ repre-
sents the perturbations in R̃Q. Assuming �RQ has a norm
bound δQ, the optimization problem is to maximize the
worst AC under all potential �RQ,

max
w

min
�RQ

wH RLw

wH R̃Qw
s.t.

∥∥�RQ

∥∥
F ≤ δQ, (3)

where ‖*‖F denotes Frobenius norm. The solution is [15]:

wWC = �1
{
(RQ + δQI)−1RL

}
, (4)

where �1(*) denotes the principal eigenvector, correspond-
ing to the maximum eigenvalue and I is a L × L identity
matrix. Eq. (4) has a standard regularization form that may
be found by applying an energy constraint [8, 26]. How-
ever, the diagonal loading parameter δQ is derived directly
from the error bound

∥∥�RQ

∥∥
F ≤ δQ, rather than from white

noise gain or AE constraints. As mentioned in [23], it might
also be useful to apply a weighting to the estimated error
bound of

∥∥�RQ

∥∥
F to avoid “over-robust” solutions that

maintain robustness but lead to poor AC performance. Er-
rors in the listening zone TFs could be incorporated into the
WCO, replacing RL in Eq. (4) with (RL − δLI) [15]. How-
ever, our previous work [23, Fig. 4] showed that applying
a diagonal loading parameter δL to RL did not obviously
increase robust performance. In general, if the ratio δL/δQ is
much smaller than the potential AC, the effect of diagonal
loading on RL can be ignored.

1.4 Probability-Model Optimization
Assuming the errors in the acoustic TFs have a pre-

dictable distribution, PMO aims to improve the average
performance according to that distribution [16]. Here we
consider two kinds of error: multiplicative error and addi-
tive error.

1.4.1 Multiplicative Error PMO
Following [17], multiplicative errors can be incorporated

into PMO for ACC. The form of the TF with multiplicative
error is G̃(m,l) = G(m,l)ae jφ, where j = √−1, G(m,l) de-
notes the TF between the lth loudspeaker and mth control
point in a zone, and a and φ are the amplitude and phase of
multiplicative TF errors. The statistical features of the TF
errors are

σa = ∫
a a2 p(a) da,

μa = ∫
a a p(a) da,

σφ = (
∫
φ

cosφ p(φ) dφ)2 + (
∫
φ

sinφ p(φ) dφ)2,
(5)

and p(a) and p(φ) are the probability density functions de-
scribing the amplitude and phase errors, respectively. p(a)
and p(φ) can be obtained by acoustic modeling. Assum-
ing errors in each TF are independent and identically dis-
tributed, the average spatial correlation matrix for the quiet
zone is

RQ,PMO = RQ ⊗ EQ, (6)

where ⊗ is pointwise multiplication, and EQ is a L × L
matrix with diagonal elements equal to σa and non-diagonal
elements equal to μ2

aσφ. The average spatial correlation
matrix RL, PMO for the listening zone is obtained in the
same way. ACC with PMO for multiplicative error is

max
w

wH (RL ⊗ EL)w

wH
(
RQ ⊗ EQ

)
w

, (7)

that has the solution

wME = �1{
(
RQ ⊗ EQ

)−1
(RL ⊗ EL)}. (8)
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A special case assumes that the amplitudes of the error a
are uniformly distributed over the range [amin, amax] and the
phase error is uniformly distributed over the range [φmin,
φmax]. In this case, the entries of EQ and EL are calculated
as

σa = (a2
min + aminamax + a2

max)/3,
μa = (amin + amax)/2,
σφ = [2 − 2 cos(φmax − φmin)] /(φmax − φmin)2.

(9)

Therefore, PMO introduces regularization, which does not
directly have diagonal loading form, into the spatial corre-
lation matrices for both zones.

1.4.2 Additive Error PMO
Following [18], additive errors can also be incorporated

into PMO for ACC. The form of the TF with additive error
is G̃(m,l) = G(m,l) + ae j φ, where a and φ are now the am-
plitude and phase of the additive TF errors. The statistical
features of the additive TF errors are σa, μa, σφ and μφ =∫

φ e−jφ p(φ) dφ. We define E1,Q as a L × L matrix with ele-
ments in the lth column equal to

∑M
i=1 Gi,l

Q , i.e., the sum of
TFs between the lth loudspeaker and the M control points
in the quiet zone. We further define E2, Q as a L × L matrix
with diagonal elements equal to σa and non-diagonal ele-
ments equal to μ2

aσφ. The average spatial correlation matrix
of the quiet zone is

RQ,PMO = RQ + μaμφE1,Q + μaμ
∗
φEH

1,Q + ME2,Q, (10)

where μ∗
φ is the complex conjugate of μφ. The solution

is

wAE = �1{
(
RQ + E3,Q

)−1 (
RL + E3,L

)}, (11)

where E3,Q = μaμφE1,Q + μaμ
∗
φEH

1,Q + ME2,Q and
E3,L = μaμφE1,L + μaμ

∗
φEH

1,L + ME2,L.
As before, a special case assumes uniform error distribu-

tion with amplitude a uniformly distributed in the range [0,
amax] and phase uniformly distributed in the range [0, 2π].
In this case,

wAE = �1

{(
RQ + Ma2

max

3
I
)−1 (

RL + Ma2
max

3
I
)}

.

(12)

In this special case, PMO has a diagonal loading form acting
on the spatial correlation matrices for both zones.

1.5 Quick Parameter Estimation for Robust ACC
In the following, we refer to errors occurring in the sys-

tem as the actual errors, while the assumed errors are the
estimated errors used for filter calculations.

In the WCO approach, the robust parameter δQ (Eq. (4))
used to calculate wWC is frequency-varying and determined
by the bound of errors in the spatial correlation matrix,

δQ = b(
∥∥�RQ

∥∥
F )/ε, (13)

where ε is a scale parameter to prevent “over-robust” per-
formance in WCO. If the assumed error has the form of
multiplicative error, then

b(
∥∥�RQ

∥∥
F ) ≈ [‖(amax,MEGQ)H (amax,MEGQ) − RQ‖F/2

+‖(amin,MEGQ)H (amin,MEGQ) − RQ‖F/2]

= (|a2
max,ME − 1| + |a2

min,ME − 1|)‖RQ‖F/2, (14)

where amax, ME and amin, ME are the maximum and minimum
error gains, respectively. If the assumed error has the form
of additive error, then

b(
∥∥�RQ

∥∥
F ) ≈ ‖(GQ + amax,AE)H (GQ + amax,AE)

−RQ‖F , (15)

where amax, AE is the maximum error amplitude. The param-
eters amax, ME, amin, ME, amax, AE are determined by b(�G),
the bound of errors in TFs. Eqs. (14) and (15) lead to a quick
parameter estimation in WCO incorporating prior knowl-
edge, filling in the gap between the outcomes of acoustic
modeling (GQ and b(�G)), and directly lead to δQ (Eq.
(13)), which in turn populates the WCO solution (Eq. (4)).

Furthermore, though PMO is an error distribution based
solution, it can also be formulated based on TF error bounds
by selectively sacrificing accuracy in the error distribu-
tion estimation. Since it is difficult to accurately estimate
the actual error, a practical “quick” approach is to use a
simple error distribution (e.g., Eqs. (9) and (12) assuming
uniform distribution) to approximate the actual error. This
only requires the TF error bound parameters (amax, amin,
φmax, φmin) to calculate loudspeaker weights. These TF er-
ror bound parameters have a clear physical meaning and a
relationship to the actual error.

These “quick” approaches employing coarse error es-
timation (that does not fully describe the actual errors)
are included in the following simulation and experimental
results.

2 SIMULATIONS

In this section we present simulation results comparing
the performance of robust control approaches in the pres-
ence of TF errors.

2.1 Simulation Setup and Baseline Geometry
As shown in Fig. 2, we use an arc-shaped array with

11 loudspeakers. The loudspeakers are uniformly arranged
with a distribution angle of 6◦ around a radius of 1.68 m.
The control points for the listening and quiet zones are de-
fined on dual circles with 24 microphones in each ring,
with radii of 0.083 m and 0.104 m. In the simulations, we
suppose each loudspeaker acts as a point source. That is,
the spatial response is defined by ejkd/kd, where k is the
wave number and d is the distance between a loudspeaker
and a receiver. Errors in the system are simulated by per-
turbing the spatial responses, assuming that the error has
multiplicative form. In the Monte-Carlo trials, the ampli-
tude errors are drawn from a Gaussian distribution with
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Fig. 2. Simulation geometry with 11 loudspeakers oriented to-
wards the origin in an arc array and 48 monitor microphones
(reference microphone denoted by star, other microphones de-
noted by dot) in each zone. The listening zone and the quiet zone
are symmetric with respect to the loudspeaker array.

standard deviation of 3 dB, and the phase errors are drawn
from a uniform distribution between –10◦ and +10◦.

2.2 Diagonal Loading
The solutions WCO (Eq. (4)) and PMO for assumed spe-

cial additive errors (Eq. (12)), derived above have a similar
form to common regularization approaches, which employ
diagonal loading and add a small parameter to the diagonal
of RQ. Since the diagonal loading form is common among
many robust methods, we first directly study the relation-
ship between the value of the diagonal loading parameter
applied and the average AC performance, using Monte-
Carlo simulations [14] with 1000 trials for each frequency
sample. The AC evaluation is defined for a single frequency
as

AC = 10 log10
pH

L pL

pH
Q pQ

, (16)

which is the ratio of the sound energy in the listening zone
and the quiet zone, with pL = GLw and pQ = GQw. The
diagonal loading parameter δQ was varied from 10−15 to 105

at 1000 logarithmically spaced values, and the resulting AC,
averaged over all trials for the error conditions described
above, is shown in Fig. 3. Diagonal loading regularization
on RQ is seen to be effective in improving robustness with
a suitable selection of the parameter. A certain pattern of
average AC performance under varying δQ is observed,
which is composed of three stages. If the regularization
parameter is too small, the AC performance is reduced
(“under-robust”); with the regularization parameter in the
proper range, the AC performance stabilizes (“robust”) and
there is a peak that corresponds to the best regularization
parameter (denoted by the solid line in Fig. 3); after that
there is a sharp drop in AC and the trend eventually becomes
stable (with minimum AE), where the performance is very
robust but the AC achieved is relatively low (“over-robust”).

The AC performance within 1 dB of the peak is also
illustrated in Fig. 3 by the contoured dashed lines. The sys-
tem has different sensitivity to δQ over different frequency
ranges. The “middle” frequencies, approx. 740–2600 Hz
and 4500–5200 Hz have relatively broad acceptable δQ

range, while at low frequencies under 430 Hz and spe-

Fig. 3. Simulated AC performance with varying regularization
parameter δQ on RQ, by Monte-Carlo simulation over 1000 tri-
als for each frequency sample between 100–8000 Hz. Solid line
denotes the peak value of the mean AC performance and dashed
contours show peak AC –1 dB.

cial frequencies such as 2900–4100 Hz and 6300–7700 Hz,
where grating lobes exist, the suitable δQ range is quite
narrow, leading to sensitive performance.

It can be observed that the optimal δQ is proportional to
1/k2 for most frequencies, since the optimal regularization
value is related to the interaction between the system ge-
ometry and the errors. As equal amplitude multiplicative
errors are assumed in the whole frequency range for the
simulated system geometry, δQ largely follows the square
of the adopted source radiation gain 1/kd. However, se-
lecting δQ is more complex in practice, where the source
radiation pattern may not be as simple as a point source, and
error will also vary with both frequency and space (e.g., due
to room reflections). Incorporating error information into
control could therefore give a δQ close to the AC peak. We
explore this in the following section through comparison
with alternative methods to calculate a diagonal loading
parameter.

2.3 Estimation of Regularization Parameters
In this section regularization parameter calculation is

described for various robust control strategies, includ-
ing acoustic-modeling based methods and frequency-
dependent diagonal loading methods; and the resultant per-
formance is compared. The peak AC at each frequency (i.e.,
the value corresponding to the solid line in Fig. 2) achieved
by Monte-Carlo simulation with full knowledge of error is
used as a reference denoted as MCS.

2.3.1 Parameter Calculation
The methods under test, and their corresponding param-

eters, are defined in this section. Three acoustic-modeling
based methods were tested:

WCO represents WCO substituting the assumed error
bounds (amax,ME = √

2 and amin,ME = √
2/2) into Eqs. (13)

and (14), δQ = 0.75
∥∥RQ

∥∥ /ε, with the scale parameter ε =
102.

464 J. Audio Eng. Soc., Vol. 65, No. 6, 2017 June



PAPERS ROBUST ACOUSTIC CONTRAST CONTROL BY ACOUSTIC MODELING

PMOM represents PMO for assumed multiplicative er-
rors, assuming the special case of uniform error distribution
(Eqs. (8) and (9)). Though the error distribution features are
different between the actual error and the assumed error, we
directly apply the minimum and maximum values of the er-
ror gain and phase as amin, amax, φmin, and φmax in Eq. (9).
So, amax = √

2, amin = √
2/2, and the phase parameters

take the bound values φmax = 10◦, φmin = −10◦.
PMOA represents PMO for assumed additive errors as-

suming the special case (Eq. (12)). The error distribution
features are also different between the actual error and the
assumed error. As the actual error in the simulation is mul-
tiplicative, PMOA here also represents a situation where
the error type is wrongly estimated. The maximum value
of additive error gain in Eq. (12) among all the potential
TF variances is amax, AE. To make the estimated additive
error set contain the real multiplicative error set, amax,AE =
max{G} × amax,ME, where max{G} is the maximum among
all the TFs in G, and amax,ME =

√
μ2 − 2cos(φmax)μ + 1

with μ = 10
3
20 .

For the three acoustic-modeling based methods above,
the assumed error models are not exactly the same as the
actual error model in simulation. Nevertheless, this is in-
dicative of the practical situation when applying error-based
regularization.

In addition to these methods, three frequency-dependent
regularization methods were tested:

SV denotes regularization based on σmax, the maximal
singular value of RQ. It was noted in the discussion of Fig.
3 that over-robust performance occurs after δQ exceeded
σmax. Therefore, we set δQ = σmax/10. This method is also
adopted in, e.g., [27].

EL0 and ELM represent the approaches based on AE
control. The AE [8] is defined as:

AE = 10 log10

[(
wH w

) (
pH

L,0pL,0
)

pH
L pL

]
, (17)

where pL,0 = GLw0, in which w0 = [0 0 0 0 0 1 0 0 0 0 0]
is the weighting vector for a reference source at the center
of the array. EL0 and ELM limit AE towards 0 dB and
the minimal value, respectively. EL0 was chosen to match
previous studies (e.g., [19]). SV, EL0, and ELM represent
the situations where the geometry is known but the error
features are not.

2.3.2 Performance Comparison
In Fig. 4 we plot the mean AC and AE performance over

frequency (based on Monte-Carlo simulations, with the
same error conditions as above), for no regularization (NR),
alongside SV, EL0, ELM, and PMOA, with MCS presented
as an upper reference. The parameters estimated for WCO
and PMOM gave very similar results to PMOA (except that
PMOM was slightly better at low frequencies) and are there-
fore omitted from the figure for clarity.

In Fig. 4 all robust approaches improve performance over
NR. Among them, PMOA has the closest performance to
the optimal MCS performance, both in terms of AC and
AE, over a broad frequency range 100–8000 Hz, with lim-
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Fig. 4. Simulated performance of NR (no regularization), SV
(maximum singular-value-based regularization), EL0 (AE lim-
ited to 0 dB), ELM (AE minimized), PMOA (PMO for additive
error with quick parameter estimation), and MCS (optimal regu-
larization from Fig. 3), using Monte-Carlo Simulation over 10000
trials.

ited AC degradation, mainly at low frequencies. According
to the sensitivity concerns discussed in Sec. 2.2, we chose
three typical frequencies, namely a low frequency (200
Hz), a middle frequency (1000 Hz), and a grating lobe fre-
quency (3538 Hz), to make a detailed comparison between
the different regularization methods. The performance of
each approach at these frequencies is listed in Table 1. To
aid the interpretation of Table 1, the methods are ranked
from “under-robust” (left) to “over-robust” (right). Metrics
“mean AC” and “min AC” (denoted by AC and ∧ AC, re-
spectively) are the average and minimum AC performance
over 10000 Monte-Carlo trials. Metric “� AC” is the differ-
ence between “mean AC” and “min AC,” i.e., the difference
between average performance and worst performance over
the 10000 trials. The regularization parameter “δQ” adopted
in each method, which is roughly inversely proportional to
“AE,” is also shown. It can be noted that, among all the
methods, PMOA achieved the best performance for both
AC and ∧ AC and has the median “� AC” value among all
the methods. Comparing δQ values with reference to Fig. 3,
PMOA nearly reaches the optimal regularization parameter,
while EL0 is a little “under-robust” and SV is a little “over-
robust.” Since “over-robust,” SV and ELM have smaller “�
AC” than PMOA, with correspondingly weaker AC and ∧
AC performance. Table 1 and Fig. 4 also demonstrate that
very close AE values can give very different AC perfor-
mance, for example comparing SV and PMOA at 1000 Hz.
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Table 1. Simulated performance of various robust strategies at
200, 1000, and 3538 Hz. The mean/minimal AC (AC/∧ AC)
and their difference (� AC) over 10000 Monte-Carlo trials,

array effort (AE), and regularization parameter (δQ) are shown.
The methods are ordered in terms of their performance, from

“under-robust” (left) to “over-robust” (right).

Freq.
(Hz) Eval. NR EL0 PMOA SV ELM

AC 0.2 17.8 22.3 20.4 11.8
∧ AC –3.5 15.3 20.5 19.2 11.3

200 � AC 3.7 2.5 1.8 1.2 0.5
AE 99.4 0.0 −9.4 −9.7 −10.3
δQ 0.0 1.5e-5 1.0e-2 1.0e-1 1.0∗

AC 7.7 17.9 27.5 26.1 22.0
∧ AC 4.4 15.1 25.1 23.9 20.3

1000 � AC 3.3 2.8 2.4 2.2 1.7
AE 11.0 0.0 −9.9 −9.9 −10.0
δQ 0.0 5.5e-17 4.1e-4 3.6e-3 1.0∗

AC 0.3 6.0 7.6 4.3 0.9
∧ AC −3.8 5.1 6.3 3.7 0.6

3538 � AC 4.1 0.9 1.3 0.6 0.3
AE 56.3 0.0 2.0 −3.3 −6.8
δQ 0.0 4.8e-5 3.3e-5 1.4e-4 1.0∗

*: Array effort method picks δ between 10−20 and 100, so ELM picks
1.0.

Fig. 5. Simulated sound pressure level of ACC sound field at
1 kHz with EL0 (AE limited to 0 dB), PMOA (PMO for addi-
tive error with quick parameter estimation), and SV (maximum
singular-value-based regularization). The illustrated sound field
corresponds to a single Monte-Carlo simulation trial.

This emphasizes the difficulty in achieving optimal robust
control directly from a certain AE limit.

The reproduced sound fields using EL0, PMOA, and SV
with normalized loudspeaker weights at 1000 Hz are illus-
trated in Fig. 5. These represent a visualization of a ran-
dom trial from the 10000 Monte-Carlo simulations. EL0
(representing “under-robust”) maintains a deep quiet zone
yet does not ensure that the main lobe is transmitted di-
rectly to the required direction. On the other hand, SV and
PMOA create shallower quiet zones, yet they manipulate
the array to emit a relatively sharp main lobe towards the
listening zone. While SV (representing “over-robust”) is
affected by energy lobes across the quiet zone, PMOA still
creates sufficient cancellation and is a good compromise be-
tween quiet zone cancellation and efficient listening zone
focusing under the error conditions.

2.4 Summary
Acoustic-modeling based solutions WCO, PMOA, and

PMOM (representing WCO and PMO with assumed spe-
cial error models) are compared with AE control and
singular-value-based regularization by simulations. Since
PMOA and WCO share a diagonal loading form with reg-
ularization methods, we first observed the robust perfor-
mance by varying the regularization parameter under a cer-
tain error through Monte-Carlo simulations. The pattern
shows the system’s sensitivity to the regularization param-
eter and that good parameter estimation leads to robust
AC and AE performance. By incorporating coarse error in-
formation in addition to geometry information, PMO and
WCO derived diagonal loading parameters with clear phys-
ical meaning and reduced computational complexity com-
pared to the AE-based method.

3 EXPERIMENTAL VALIDATION

Experimental results are presented in this section to val-
idate the simulation results in a real-world reproduction
system and investigate the feasibility of using acoustic-
modeling based robust control to reduce the need for in-situ
measurements.

The experimental reproduction and performance mea-
surement system is introduced in Sec. 3.1. Three TF mod-
els and error estimation parameters for populating vari-
ous filters are elaborated in Sec. 3.2, and the error con-
ditions are described. Finally, three main observations are
made from the experimental performance measurements
and are presented in Secs. 3.3–3.5. Observation 1 con-
cerns the comparison of different robust strategies against
a certain error; Observation 2 explores the potential of us-
ing acoustic-modeling based robust control to compensate
TF mismatches arising from reduced in-situ measurements;
Observation 3 further compares the solution with reduced
in-situ measurements and the solution with full in-situ mea-
surements with different levels of error.

3.1 Experimental Setup
For comparison with the simulation study, the same loud-

speaker array and zone geometry was adopted in the exper-
iments (as shown in Fig. 2). The 11 loudspeakers (Gen-
elec 8020b) were mounted on an arc truncated from a
60-element circular array (see [6]). The 48 monitor mi-
crophones (Countryman B3 omni) were assembled in a bi-
circular array and used to measure each zone at the listening
plane. The “playrec” utility in Matlab was used to play and
record sound with the loudspeaker and microphone arrays.
A multichannel soundcard (MOTU PCIe 424) served as the
analog to digital interface, and the microphone inputs were
passed through a pre-amplifier (PreSonus Digimax D8).
Level differences between microphones were compensated
through calibration. The whole system was placed in an
acoustically treated recording studio [6] with size 6.55 ×
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Fig. 6. Measured RIR: (a) unprocessed; (b) cropped 20 ms; (c)
cropped 3 ms. The length shape of the cropping windows, includ-
ing the crop limit and a 15 ms raised-cosine taper, are illustrated
by the dashed lines. The maximal amplitude value is 0.30.

8.78 × 4.02 m (RT60 255 ms averaged over 0.5, 1, and
2 kHz octave bands1).

To achieve the goal of rendering different audio content to
two listeners, one in each sound zone, two target situations
were measured: Target A – the left zone as the quiet zone
and the right zone as the listening zone; Target B – the left
zone as the listening zone and the right zone as the quiet
zone.

Though a symmetric geometry setup was employed, the
performance was not expected to be identically symmetric,
being influenced by the asymmetric room effect, source
position mismatches, source sensitivity inconsistencies, and
so on.

3.2 Transfer Function Modeling and Filter
Calculation with Error Estimation

The measurement and pre-processing of TFs between
loudspeakers and zones are introduced in this section. The
errors manually introduced in realization and the filter cal-
culation are also described.

3.2.1 Transfer Function Measurements
Room impulse responses (RIRs) between each micro-

phone position and each loudspeaker were measured using
the maximum length sequence approach (15th order at 48
kHz). Cropping was applied to the measured RIRs to avoid
the presence of unnecessary room effects in the TFs. The
RIR from the center loudspeaker to the reference micro-
phone (�, Fig. 2) in the listening zone is shown in Fig. 6, (a)
without cropping, (b) cropped at 20 ms after the impulse
onset, and (c) cropped at 3 ms after the impulse onset. The
cropping envelopes, which include a raised cosine ramp at
15 ms duration after the crop time, are also shown. The

1Supplementary information about the experimental
measurements can be found via http://www.lab9.ac.cn/
scientific/RobustACC.html

unprocessed RIR (Fig. 6(a)) contains the direct sound, re-
flections, and reverberant tail, illustrating the complexity
of the TFs in this system realization, whereas the 20 ms
cropped RIR (Fig. 6(b)) retains the direct sound and early
reflections, and the 3 ms cropped RIR (Fig. 6(c)) retains
the direct sound and the first early reflections.

Three TF models, implying different levels of in-situ
measurement, are adopted in the loudspeaker weight calcu-
lation and are compared in Sec. 3.4 and Sec. 3.5.

RIR: All the TFs (between each loudspeaker and 48
control points in each zone) used for the filter design are
measured in-situ and cropped at 20 ms (i.e., as in Fig. 6(b)).

RIR-PS: Only TFs between each loudspeaker and the
two reference microphones are measured and cropped at 3
ms (i.e., as in Fig. 6(c)). The TFs to the other microphone
positions are obtained by interpolation through the point
source model, Hm,l = Href,l × e− jk(dm,l−dref,l ) × dref,l/dm,l ,
where dref, l and dm,l are the distances from the lth loud-
speaker to the reference and mth monitor microphones,
respectively. dref, l/dm,l and (dm,l − dref, l)/c are assumed to
be the gain and delay differences between the TF from the
lth loudspeaker to the mth control point (Hm,l) and that to
the reference control point (Href, l) in a zone, and c is the
speed of sound.

PS: All the TFs are calculated by the point source model
e− jkdm,l /dm,l , without any measurement.

The distances (dref, l and dm,l) used in RIR-PS and PS are
those according to the pre-defined geometry (in Sec. 3.1)
rather than experimentally measured distances.

Compared with PS, RIR-PS contains the basic source
equalization and partial loudspeaker directivity informa-
tion. Compared with RIR, RIR-PS lacks detailed source
directivity, source inconsistency, and room information but
requires less measurements to be made. RIR-PS therefore
represents the case where limited measurements are in-
cluded in the source model. This approach can be compared
to previous work that has used either full TF measurement
(e.g., [6]) or purely a point-source model (e.g., [28]).

In practice, pseudo-anechoic responses from loudspeak-
ers towards the reference microphone, similar to RIR-PS
could potentially be obtained from the manufacturer. Fur-
thermore, instead of the simple point source model, a source
directivity model (e.g., [24]) could be measured and applied
into the interpolation for better source modeling.

3.2.2 Errors in Realization
Two errors are considered in the experiments:

1) Inconsistency error over the loudspeaker array
We investigate perturbation errors by artificially introduc-
ing source inconsistencies in our experiments. Three sets
of multiplicative gains for the loudspeaker responses were
applied to explore the performance under this systematic
error. The gains for each loudspeaker channel were ran-
domly generated under error bounds ±0.1, ±0.5, and
±1.0 and are shown in Fig. 7. Note that the gain sets are
not symmetric, contributing to performance differences
between the Target A and Target B cases.
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Fig. 7. Artificial inconsistency gain applied to each loudspeaker
randomly generated by three levels of multiplicative error bounds
(0.1, 0.5, 1.0).

2) Mismatch error in TF modeling
Reducing in-situ TF measurements can potentially reduce
the amount of time taken to realize a sound zone system.
However, mismatches might arise between the modeled
TFs for filter design and the real TFs in reproduction.

The artificially applied inconsistency error is adopted as
the main error in Observation 1 (Sec. 3.3). The mismatch
error is considered as the main error in Observation 2 (Sec.
3.4). Both errors are considered together in Observation 3
(Sec. 3.5).

3.2.3 Error Estimation Parameters for Filter
Calculation

We use [–3 dB, 3 dB] uniform multiplicative error (iden-
tical to the simulation study), and also a tightened [–1 dB, 1
dB] uniform multiplicative error, with [–10◦, 10◦] uniform
phase error, as rough estimations of system errors (intro-
duced in Sec. 3.2.2).

The quick estimation (e.g., Sec. 2.3) was again applied
to obtain the control parameters for WCO, PMOA, and
PMOM in experiments. With the three types of determined
model (RIR, RIR-PS or PS) and the two levels of error es-
timation (evenly-distributed multiplicative error within ±3
dB or ±1 dB), six sets of WCO/PMOA/PMOM filters were
prepared. Due to the similarity in measured AC perfor-
mance between WCO, PMOA, and PMOM, which was also
observed in simulations, WCO is omitted from the figures
in the following observations for clarity.

3.3 Observation 1: Robust Strategies under
Loudspeaker Inconsistency Error

This experimental observation corresponds to the sim-
ulation study in Sec. 2.3.2. TFs RIR were used for fil-
ter calculation. Errors were assumed to be uniform mul-
tiplicative errors with ±1 dB error bounds and the set of
loudspeaker gain inconsistencies with error bound 0.5 was
applied. The methods under test were SV, EL0, PMOA,
PMOM, and WCO. In the simulations in Sec. 2.3.2, the av-
erage/minimum AC performance was evaluated by Monte-
Carlo simulation while the experimental observations are
analogous to a single case study.
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Fig. 8. Measured AC performance for Target A and Target B
with NR (no regularization), SV (maximum singular-value-based
regularization), EL0 (AE limited to 0 dB), PMOA (PMO for ad-
ditive error with quick parameter estimation), and PMOM (PMO
for multiplicative error with quick parameter estimation), with
loudspeaker gain inconsistency error bound of 0.5 and RIR TFs.

Following Fig. 4, Fig. 8 shows the comparison of the
five robust strategies. Among all the strategies, NR and
EL0 were not effective at most frequencies; SV acted close
to PMOA; PMOA and PMOM performed well at most fre-
quencies and had an obvious advantage at low frequencies
for both Target A and Target B. PMOM and PMOA gave
AC at or above 15 dB over 300–2800 Hz, and above 10 dB
over 125–3000 Hz (for both targets), maintaining accept-
able zone separation [29] in these ranges. It can be observed
that even though a symmetric geometry was defined, the
asymmetric errors led to differences in the performance for
Target A and Target B.

Following Table 1, Table 2 shows AC and AE for Tar-
get A and Target B at three typical frequencies according
to the robust performance pattern (cf., Fig. 3). At 200 Hz
and 1000 Hz, PMOM achieved the best AC and also low
AE; PMOA and SV both performed much better than EL0
and NR. However, at the grating lobe frequency 3538 Hz,
EL0 performs slightly better than the others. However, no
method is effective for delivering sound zones at this fre-
quency.

From the case study conducted with the measured RIRs
against loudspeaker inconsistency errors generated from a
partially known error set, PMOA and PMOM (representing
acoustic-modeling based robust ACC) gave competitive
performance.

468 J. Audio Eng. Soc., Vol. 65, No. 6, 2017 June



PAPERS ROBUST ACOUSTIC CONTRAST CONTROL BY ACOUSTIC MODELING

Table 2. Measured AC and AE of various robust strategies,
averaged over Target A and Target B, with loudspeaker

inconsistency gain with multiplicative error bound of 0.5 using
RIR TFs.

Freq. (Hz) Eval. NR EL0 PMOM PMOA SV

200 AC 0.8 6.2 13.4 12.9 10.8
AE 13.9 −0.3∗ −4.9 −5.8 −7.5

1000 AC 11.1 12.7 17.5 17.2 17.4
AE −8.3 −8.3∗ −12.0 −13.0 −13.7

3538 AC 6.3 7.0 6.5 5.3 5.8
AE 8.8 1.8∗ 7.9 8.5 −1.0

*: EL0 method picks δ closest to 0 dB from 101 logarithmically spaced
samples between 10−20 and 100.
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Fig. 9. Measured AC performance of RIR-SV (full in-situ mea-
surement with SV regularization), RIR-PS-PMOM (single channel
in-situ measurement with PMOM), and PS-PMOM (point source
model with PMOM). AC and normalized listening zone FR are
shown for Target A (without artificial gain errors applied).

3.4 Observation 2: Reducing in-situ
Measurement

In this observation the three TF models, RIR, RIR-PS,
and PS (introduced in Sec. 3.2), were individually adopted
for filter calculation and their performance (with no addi-
tional inconsistency errors) is compared. Compared with
RIR, RIR-PS, and PS lack accurate information about the
TFs, which introduces a mismatch. We assume that the dif-
ferences between RIR and RIR-PS (or PS) can be described
by uniform multiplicative error within ±1 dB. The solutions
found by applying PMOM to the RIR-PS and PS TFs (de-
noted RIR-PS-PMOM and PS-PMOM), are compared with
the case of fully measured TFs with maximum-singular-
value dependent regularization (RIR-SV). The AC perfor-
mance and the listening-zone-averaged frequency response
(FR) for these three cases, reproduced for Target A, are
shown in Fig. 9.

Considering AC, RIR-SV performed better than RIR-
PS-PMOM and PS-PMOM, except for some low frequen-

cies where it did not work well. However, the degradations
between RIR-SV and RIR-PS-PMOM/PS-PMOM are only
1.12/1.39 dB respectively, averaged over 100–3000 Hz.

The FR curves here are normalized by their average value
over 100–8000 Hz, and (spatially) averaged over the 48
microphones in the listening zone. The flatness of FR is
related to the reproduced sound quality. It can be quantified
by measuring the frequency response variance, which is
defined as

FRV =
√√√√ 1

N f

N f∑
i=1

(pi − p)2, (18)

where Nf is the number of linear frequency samples, pi is
the spatially averaged listening-zone sound pressure at the
ith frequency sample, and p is the sound pressure averaged
over all the frequency samples. The FRV metric is included
as informal listening revealed that non-flat frequency re-
sponses for some non-robust filters led to sound quality
degradations. The FRVs of RIR-SV, RIR-PS-PMOM, and
PS-PMOM are respectively 1.22, 1.65, and 2.56 dB. The
flatness of RIR-PS-PMOM is between that of RIR-SV and
PS-PMOM because it contains information about the loud-
speaker equalization. Taking one path measurement into
account, as in RIR-PS, can therefore be expected to im-
prove the reproduced sound quality.

The hybrid solution, using acoustic-modeling based ro-
bust control to reduce the need for in-situ measurement,
could achieve satisfactory reproduction performance with
a single measurement per loudspeaker, per zone. The RIR-
PS-PMOM method achieved an AC performance above 15
dB over 320–3000 Hz (except a small drop at 800 Hz), and a
close FRV performance with RIR-SV, especially over 250–
1600 Hz, despite incorporating a simple acoustic model
(point-source interpolation and quick error estimation).

Better acoustic modeling may further improve the AC
and FRV performance for the reduced-measurement case
RIR-PS-PMOM, such as modeling the source radiation pat-
tern. This should, for example, improve the match in FR
between the RIR-SV and the reduced-measurement cases
above 1600 Hz.

3.5 Observation 3: Robustness against Different
Levels of Inconsistency Error

Two practical robustness problems are investigated
further in this section: regularized filter performance
with various levels of error and the sensitivity of the
acoustic-modeling based methods to wrongly-estimated er-
ror bounds. Three different levels of loudspeaker gain in-
consistency error (Sec. 3.2.2, Fig. 7) were tested. The AC
performance of RIR-SV (upper) and RIR-PS-PMOM (with
±1 dB error bound estimation, lower), averaged across Tar-
get A and Target B, is shown in Fig. 10. The correspond-
ing AC performance at three typical frequencies is listed
in Table 3, which also includes RIR-PS-PMOM with ±3
dB error bound estimation. As the loudspeaker gain error
increased, the overall performance of both RIR-SV and
RIR-PS-PMOM dropped. However, the AC performance
of both methods was above 10 dB (over 300–3000 Hz)
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Table 3. Measured RIR-SV and RIR-PS-PMOM performance
(AC averaged over Target A and Target B) for loudspeaker gain
inconsistency with multiplicative error bounds of 0.1, 0.5, and
1.0. PMOM1 dB, PMOM3 dB denote PMOM with 1 dB or 3 dB

error bound estimation.

RIR-PS-

Freq. (Hz) Incon. RIR-SV PMOM 1 dB PMOM 3 dB

200 0.1 11.03 11.55 11.48
0.5 10.79 10.97 11.47
1.0 7.60 9.72 9.00

1000 0.1 18.55 18.29 18.23
0.5 17.43 17.13 16.93
1.0 17.45 17.39 17.32

3538 0.1 5.94 3.45 4.20
0.5 5.76 3.56 4.26
1.0 5.44 3.03 3.70
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Fig. 10. Robustness against artificial gain inconsistencies with
multiplicative error bounds of 0.1, 0.5, 1.0. Mean AC (Target A
and Target B) is shown for RIR-SV and RIR-PS-PMOM with 1
dB error bound estimation.

for all three inconsistency levels. From Table. 3, RIR-PS-
PMOM performed slightly worse than RIR-SV at 1000 Hz
but slightly better at 200 Hz. At the grating lobe frequency
(3538 Hz) neither approach achieved good AC, though
RIR-SV was better. Overall, the reduced measurement case
RIR-PS-PMOM remained competitive with RIR-SV as the
reproduced error increased.

Furthermore, the two RIR-PS-PMOM filters with differ-
ent assumed error bounds (±1 dB or ±3 dB) performed
closely. That is, the control parameters selected by error-
based methods (e.g., PMOM) were quite robust to wrongly
estimated error bounds, and the actual error in reproduction
had a larger effect than the estimated error bound under the
system we tested. For example, at 1000 Hz the difference
in the inconsistency error bounds (±0.1 and ±0.5) led to a
difference of more than 1.1 dB in AC performance, while
the difference in estimated error bound (±1 dB ≈±0.1 and
±3 dB ≈±0.4) led to a performance difference within 0.2

dB. This experimental observation is in accordance with our
previous simulations on error estimation mismatch in [23].

4 DISCUSSION

Overall, incorporating increasing amounts of prior
knowledge into the system optimization allows for more
robust control. With prior knowledge of the TFs, which en-
capsulate the system geometry and acoustic environment,
we can aim to find a frequency-dependent regularization pa-
rameter. For some kinds of error, AE-based methods might
be appropriate, however, the criterion for setting the AE
constraint is not very clear and might make the performance
“under-robust” or “over-robust” in reality. From Table 1, for
example, a small difference in AE results in a quite different
δQ. The singular-value based method (SV) also requires a
threshold to be selected.

Additionally, limited knowledge about a potential error
model can be incorporated by focusing on the bounds of
the error, rather than the detailed error distribution (e.g.,
PMOA, PMOM, WCO). In simulation, the “quick” robust
methods obtained good AC and AE performance, with re-
duced computational complexity compared to a Monte-
Carlo simulation-based reference method [14]. More accu-
rate acoustic modeling with WCO and PMO, might give
better performance than the quick methods. However, from
Figs. 3 and 4, it seems that any improvements might not
be very remarkable compared with the increasing difficulty
in error model estimation and complexity in calculation. In
this case, the proposed “quick” methods offer a compelling
means to calculate the regularization term. Furthermore, the
proposed methods directly use physical acoustic modeling
with a clear optimization goal (WCO or PMO) to choose
the regularization parameter.

In practice, the error bound information required in the
“quick” approaches can be obtained from both measure-
ment and simulation, depending on the application scenario.
For example, the bound value for the loudspeaker incon-
sistency in Observation 1 could be estimated by measuring
a set of loudspeakers of the same model or directly pro-
vided by the loudspeaker manufacturer. Other error bounds
could be obtained by simulation, for example by applying
position mismatches.

With a full error analysis or extensive measurements,
there is potential to increase the robustness of AC per-
formance, mainly at low frequencies. However, the maxi-
mal performance loss (at low frequencies) resulting from
“quick” parameter estimation was only 1.5 dB for simula-
tions of the application geometry studied in our paper.

As an application of acoustic-modeling based robust con-
trol, we proposed a novel method to narrow the gap between
no measurement and full measurement of TFs as input to
the optimization. We measure a single TF per loudspeaker
in each zone, interpolate the sound pressure to other micro-
phone positions, and compensate the mismatch by acoustic-
modeling based robust control. In this way the TF mea-
surement was reduced from 11 × 2 × 48 RIRs to 11 ×
2 RIRs. Experimental results revealed a trade-off between
reducing measurements, which saves time and simplifies
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the equipment requirements, and the limited sacrifice in
performance. Opportunities remain to improve the accu-
racy of the acoustic modeling by considering loudspeaker
directivity (that might be obtained directly from the manu-
facturer), the room effect, and more detailed estimation of
the individual sources of error.

5 CONCLUSION AND FUTURE WORK

In summary we have proposed a new framework for ro-
bust sound zone reproduction design, which uses acoustic
modeling to derive the entries for calculating robust control
parameters. We formulated and implemented robust ACC
based on WCO and PMO for multiplicative and additive
error as examples of the proposed framework. We illus-
trated the performance improvements and comparisons by
both simulation and experimental studies and demonstrated
the effectiveness of acoustic-modeling based robust ACC,
with “quick” error estimation. In experimental observa-
tions, incorporation of acoustic modeling gave comparable
performance to the state-of-the-art methods for regulariza-
tion parameter selection in robust filter design, and enabled
the number of in-situ measurements to be reduced.

Future work should conduct subjective evaluation of the
reproduced audio through various robust strategies, investi-
gate the effects of different loudspeaker directivities on the
robust optimization, introduce room modeling techniques
alongside source radiation analysis to make better acoustic
modeling of both the determined part and stochastic part
for reflective room reproduction, and explore the accuracy
needed in acoustic modeling for robust ACC to further re-
duce in-situ measurements.
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