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6DJM Consultancy, West Sussex, UK, on behalf of BBC Research, UK
7now at Harman Becker Automotive Systems GmbH, Germany

Previously-obtained data, quantifying the degree of quality degradation resulting from a
range of spatial audio processes (SAPs), can be used to build a regression model of perceived
spatial audio quality in terms of previously developed spatially and timbrally relevant metrics.
A generalizable model thus built, employing just five metrics and two principal components,
performs well in its prediction of the quality of a range of program types degraded by a
multitude of SAPs commonly encountered in consumer audio reproduction, auditioned at both
central and off-center listening positions. Such a model can provide a correlation to listening
test data of r = 0.89, with a root mean square error (RMSE) of 11%, making its performance
comparable to that of previous audio quality models and making it a suitable core for an
artificial-listener-based spatial audio quality evaluation system.

0 INTRODUCTION

A previous study [1] made the case for a new artificial-
listener-based evaluation system capable of predicting the
perceived quality degradations resulting from spatial audio
processes (SAPs) commonly encountered in consumer au-
dio multichannel loudspeaker reproduction systems (e.g.,
downmixing, multichannel coding, loudspeaker misplace-
ment); it explained how such a system would be useful
for quickly assessing overall spatial sound quality for re-
search, product development, and quality control where
assessment by a listening panel would be impractical or
impossible. That study determined the degree of quality
degradation resulting from a wide range of such SAPs and
the influences of listening position and source material on
that degradation. The research reported in the current paper
will determine whether these findings can be used to build

a regression model of perceived spatial audio quality, in
terms of previously-developed metrics, that can form the
core of the above-mentioned evaluation system.

The intended system, named QESTRAL (Quality Eval-
uation of Spatial Transmission and Reproduction using an
Artificial Listener) was proposed previously by Rumsey
et al. [2] and, like PEAQ (Perceptual Evaluation of Audio
Quality) [3], it will use an intrusive evaluation method to
compare a reference version of the signal with one impaired
by a SAP. Also like PEAQ, and the spatial hearing model de-
veloped by Mason [4], the QESTRAL system will employ
specifically-synthesized audio probe signals, rather than an-
alyzing real program material. These will be rendered via
the SAP-degraded system and captured binaurally at the lis-
tening position, initially in a computer-simulated anechoic
environment. Metrics will be applied to the captured sig-
nals and the results of these metrics will feed the regression
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Fig. 1. QESTRAL model architecture.

model. Although anechoic reproduction will sound differ-
ent to reproduction in a listening room, it is expected that
the perceptual effect of a SAP on a program item replayed
anechoically will be very similar to its effect on reproduc-
tion in a listening room. If this is not the case then the
differences could prevent the model from meeting its target
specification. If the specification is not met then it may be
necessary to incorporate simulation of room reflections into
the model. The QESTRAL model architecture is illustrated
in Fig. 1.

Section 1 of this paper reviews the performance of previ-
ous audio quality models in order to define an appropriate
specification for the QESTRAL regression model. Section
2 details the selection of data to be modeled and the choice
of appropriate metrics, defines the probe signals required
by these metrics, and develops the new regression model.
The model is evaluated in Sec. 3 and its performance is
compared to the target specification and to that of previous
quality models.

1 PREVIOUS MODELS AND TARGET
SPECIFICATIONS

A number of objective models for predicting sound qual-
ity have been created previously. This section provides a
brief review of the recent models most directly relevant to
the current study in order that their strengths and weak-
nesses can inform the target specification for a new model.

1.1 Previous Models of Audio Quality
PEAQ is the adopted standard algorithm for the objec-

tive assessment of perceived audio quality [3]. It uses an
intrusive approach to measure the degradation of a selec-
tion of natural (speech or music) and synthetic test signals.
The measurement algorithm is based on six independently

developed models, each of which has a correlation (r) of
between 0.67 and 0.86 with listening test data. PEAQ was
designed to evaluate timbral changes to monophonic au-
dio and 2-channel stereo systems and does not take ac-
count of spatial characteristics. (An adaptation to enable
PEAQ to evaluate degradations to spatial quality is under
consideration [5].)

Zieliński et al. [6, 7] developed a form of parametric
model for predicting the Basic Audio Quality (BAQ) of
a multichannel audio system. Their Quality Advisor (QA)
was designed as a decision-making tool for broadcast en-
gineers and codec designers. It uses a look-up table of data
collected from listening tests [8, 9] to advise on the change
in quality likely to result from a particular audio process.
With respect to this listening test data, the QA has a cor-
relation of r = 0.93 and an RMSE (between measured and
predicted data) of 9%. It is limited to the assessment of
bandwidth reduction and down-mixing processes.

Choi et al. [10] proposed a multichannel addition to the
PEAQ standard. Their two models used ten output vari-
ables from PEAQ with three additional spatial metrics—
interaural level difference distortion, interaural time differ-
ence distortion, and interaural cross-correlation coefficient
(IACC) distortion—to predict degradations to BAQ caused
by multichannel audio codecs. The models showed good
correlation with listening test data: for the neural network
model a correlation of r = 0.85 was achieved with an RMSE
of 5.09%; for the linear estimator model a correlation of
r = 0.79 with an RMSE of 5.44% was achieved. The mod-
els were designed to evaluate degradations created by mul-
tichannel audio codecs only. Seo et al. [11, 12] improved
upon this work achieving, with the neural network model,
a correlation of r = 0.88 and an RMSE of 5.18%.

George [13] developed objective evaluation models, for
use with an intrusive measurement method, for predicting
process-induced impairment to the frontal spatial fidelity,
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Table 1. Performance summary of quality models developed by George [13].

Calibration Validation

Model Correlation RMSE (%) Correlation RMSE (%)

Frontal spatial fidelity 0.91 9.33 0.88 15.45
Surround spatial fidelity 0.95 8.87 0.87 14.19
Timbral fidelity 0.95 7.72 0.92 8.37

surround spatial fidelity, and timbral fidelity of 5-channel
audio recordings. The models were calculated using lin-
ear regression analysis, calibrated using data collected by
Zieliński et al. [8, 9], and validated using data collected by
George [13]. Table 1 shows the correlation and RMSE of
each of the models to calibration and validation data. The
frontal and surround spatial fidelity models do assess spatial
quality but not as a single overall quantity, and they are lim-
ited to the evaluation of degradations caused by bandwidth
reduction and downmixing.

1.2 Target Specifications for the QESTRAL
Model

The models reviewed above either (i) ignore the con-
tribution of spatial attributes to overall quality or if spa-
tially aware; (ii) only consider the degradations resulting
from a limited selection of SAPs, omitting, for example,
degradations created unintentionally by the consumer such
as the misplacement of loudspeakers from their intended
positions, or connecting the loudspeakers to the incorrect
output of the distribution amplifier; or (iii) predict partic-
ular aspects of spatial quality but not spatial quality as a
whole. The QESTRAL model must handle a wider range
of degradations and must provide a single-number predic-
tion of overall spatial quality, taking into account all of
the relevant components. In this way it can complement
existing more specific and non-spatial models.

The maximum correlation between measured and pre-
dicted data achieved by PEAQ is r = 0.86. To be consid-
ered fit for purpose the QESTRAL model must achieve a
similar level of correlation to this adopted standard. It must
also achieve an RMSE similar to or less than the average
inter-listener error in the subjective data from which it is
built.

It is also desirable for the model to be generalizable (i.e.,
likely to be able to accurately predict the spatial quality
of program/SAP combinations other than those used in its
development). To achieve this, the model’s component met-
rics should exhibit low multi-co-linearity; this is observed
if each metric has a low variance inflation factor (VIF);
the VIF of an independent variable indicates the strength
of its linear correlation with the other independent vari-
ables. Field [14] recommends a number of VIF thresholds
that suggest that a mean VIF greater than 5 (and certainly
greater than 10) indicates high multi-co-linearity, while the
closer the mean VIF is to 1 the lower the multi-co-linearity.
Hence, for low multi-co-linearity in the QESTRAL model,
the metrics used should exhibit a mean VIF close to 1.

Table 2. QESTRAL model target specifications.

Criterion Target specifications

Correlation (r) ≥ 0.86
RMSE (%) ≤ approx. inter-listener error
VIF (mean) ≈ 1
No. of metrics as low as possible
No. of PCs as low as possible

Generalizability will be further helped if the number of
metrics is minimized, since this will increase the number
of degrees of freedom available for the identification of
optimal coefficient values. The same is true of the num-
ber of regression principal components (PCs)—orthogonal
groups of co-varying metrics—employed.

The use of only expert listeners in all the experiments
feeding into the model may limit its generalizability, specif-
ically in terms of its ability to predict quality as perceived
by naı̈ve listeners. Expert listeners were, however, used in
order to minimize statistical noise in the data from po-
tentially quite demanding listening tests. If future evalua-
tion shows the model’s accuracy to be poor with respect
to naı̈ve listener perception then enhancements may be
required.

The target specifications derived above are summarized
in Table 2.

2 DEVELOPMENT OF THE QESTRAL MODEL

This section explains the selection and preprocessing of
previously-obtained listening test data, selects appropriate
audio metrics, and defines the necessary probe signals. It
then describes the modeling of these data in terms of these
metrics.

2.1 Data to Be Modeled
A previous paper [1] established the perceived qualities

of six spatial audio program items after being processed
by up to 48 SAPs and auditioned at two listening posi-
tions. The mean (across listeners) quality rating for each
combination of program item, SAP, and listening position
potentially provided a unique data point for modeling. How-
ever, disagreement between listeners with regard to the de-
gree of quality degradation apparent in some stimuli meant
that the distributions of individual quality ratings for these
stimuli were multi-modal and/or platykurtic and the asso-
ciated means could not be considered reliable. If the model
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Fig. 2. Comparison of quality ratings from listening test 2 (off-
center listening, on-center reference) with quality ratings from
listening test 1 (off-center listening, off-center reference). Best
fit line used to calculate 2nd order polynomial transformation
function.

attempted to fit these unreliable means then it could be
artificially skewed toward points that were not representa-
tive of the elicited quality ratings, potentially reducing its
accuracy and its generalizability. Removing the data cor-
responding to these stimuli left a database of 308 ratings
spanning the full range of the quality scale employed, with
a mean inter-listener error of approximately 14%

The 14% inter-listener error is indicative of the some-
times highly subjective nature of quality perception. It could
imply a maximum possible accuracy for the QESTRAL
system that might only be exceeded if listeners are grouped
into sub-populations and each sub-population is modeled
separately. Currently, however, a single predictive model is
sought.

The quality ratings were elicited in two listening
tests. In listening test 1, centrally-auditioned SAPs were
compared to a centrally-auditioned reference and off-
center-auditioned SAPs were compared, separately, to an
off-center-auditioned reference. In listening test 2,
centrally-auditioned SAPs and off-center-auditioned SAPs
were both compared to a centrally-auditioned reference.
Data from these two tests can only be combined for mod-
eling if the effect of moving the reference off-center is
consistent and can be compensated for accurately (if the
effect is complex and difficult to represent then attempt-
ing to combine the two data-sets is likely to result in a
poor model). As can be seen in Fig. 2, the relationship
between data from test 2 and corresponding (in terms of
SAP and program type) data from test 1 is described well
by a simple curve (r2 = 0.89) and so the equation of this
curve can be used safely to transform the test 1 data. For the
model to represent quality with respect to an ideal centrally-
auditioned reference, each test 1 datum d was therefore ad-

Table 3. Spatial Attribute definitions given to the expert
listeners.

Spatial Attribute Definition

Coverage angle The perceived width of the entire
audio scene

Individual source width The perceived width of
individually localized sound
sources within the audio scene

Ensemble width The perceived width of a group
of sound sources that share a
common cognitive label

Envelopment The perceived sensation of being
enveloped and surrounded by
the audio scene

Spaciousness The perceived sensation of
presence and sense of
environment within the audio
scene

Distance The perceived distance of the
entire audio scene from the
listener

Depth The perceived depth of the entire
audio scene

Individual source location The location of an individual
source

justed to a new value D, prior to modeling, by way of the
transformation:

D = 16.056 + 0.823d − 0.003d2 (1)

2.2 Objective Metrics
Previous research has resulted in a range of metrics likely

to relate to spatial audio quality [13, 15–20]. Of the very
many metrics available, a selection of “likely candidates”
was required for use in the modeling process. This initial
selection could then be refined by the regression analysis.
To guide the initial choice of candidate metrics, a short
listening test was employed to indicate, across the data
to be modeled, which spatial attributes had been most af-
fected by the SAPs. Two expert listeners, with training and
several years’ experience in critical listening, were asked
to assess, on a four-point scale, the magnitude of change
to each of eight spatial attributes: coverage angle; indi-
vidual source width; ensemble width; envelopment; spa-
ciousness; distance; depth; and individual source location.
These attributes were selected after consideration of previ-
ous research into spatial attributes relevant to overall quality
[21–26]. The two listeners were provided with the attribute
definitions (adapted from those proposed by Rumsey [24])
set out in Table 3.

The results of this test, summarized in Fig. 3, show that
the attributes suffering the highest number of large impair-
ments were source location, envelopment, coverage angle,
ensemble width, and spaciousness. Hence, metrics relating
to these attributes were selected. Further information on the
test can be found in the Ph.D. thesis of Conetta [27].

Zieliński et al. [28] observed an overlap in the percep-
tion of the spatial and timbral domains for certain audio
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Fig. 3. Magnitudes of SAP effects on individual spatial attributes.

processes, and George [13] employed timbral metrics in
models he created to evaluate frontal spatial fidelity and
surround spatial fidelity. With this in mind, a further short
listening test was undertaken to determine whether a sim-
ilar overlap was apparent in the data to be modeled here.
In this test 17 listeners were asked to assess separately,
on 100-point scales, the degree of spatial change and the
degree of timbral change resulting from each of a subset
of SAPs. The subset contained examples from each SAP
group (Table 7). The results revealed a strong correlation
between spatial and timbral perception, suggesting that (i)
the SAPs degraded spatial and timbral attributes to very
similar degrees and/or (ii) degradation to timbral attributes
affected spatial perception (and/or vice-versa).

(i) It certainly seems possible that at least some SAPs
(e.g., multichannel coding, inter-channel phase errors)
might have degraded spatial and timbral attributes simi-
larly. If this was the reason for the observed correlation
then the spatial audio quality model can safely ignore tim-
bral attributes, since they were not directly affecting spatial
quality; they were simply varying in parallel with it.

(ii) If degradation to spatial attributes was affecting tim-
bral perception then, again, the model can safely ignore
timbral attributes. If, however, degradation to timbral at-
tributes was directly affecting spatial perception then the
model must be able to take timbral degradations into ac-
count when predicting spatial quality. To allow for this pos-
sibility, further metrics, relating to timbre, were selected.
Further information on the test can again be found in the
aforementioned thesis.

Table 4 lists the 14 chosen candidate metrics. The imple-
mentation of these metrics has been documented by Jackson
et al. [29] and Dewhirst et al. [30].

2.3 Probe Signals
Each of the metrics was designed to analyze the response

of the system under test to one of two bespoke probe signals
(Table 5). One signal facilitated measurement of changes
to spatial characteristics in the foreground audio stream
(e.g., source location, individual source width, ensemble
width, source stability, source focus [24]); the other was
for measurement of changes to spatial characteristics in the
background stream (e.g., envelopment, scene width, spa-
ciousness [ibid.]). Further information on the probe signals
can be found in Dewhirst et al. [30].

A potential disadvantage of using these simple synthetic
probe signals, rather than a variety of realistic program
material extracts, is that there is no mechanism for the
model to predict quality differently for alternative program
types (e.g., classical music, pop music, sport, drama). The
previous paper [1] suggested that this situation would not
be ideal and so the effects of this simplification will be
specifically explored in the evaluation section of this paper.

2.4 Regression Modeling
The QESTRAL model was generated using regression

analysis and required an approach that (i) was suitable for
use with a large selection of metrics; (ii) would not be
hampered by any multi-co-linearity between metrics; (iii)
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Table 4. Candidate metrics employed in the generation of the QESTRAL model.

Metric Probe signal Description and related perceptual attributes

1 IACC0 1 The mean IACC value calculated across 22 frequency bands (150 Hz–10
kHz) calculated from a 0◦ head rotation. Attributes: envelopment, ensemble
width, and spaciousness

2 IACC90 1 The mean IACC value calculated across 22 frequency bands (150 Hz–10
kHz) calculated from a 90◦ head rotation. Attributes: envelopment,
ensemble width, and spaciousness

3 IACC0*IACC90 1 The product of IACC0 and IACC90. Attributes: envelopment, ensemble
width, and spaciousness

4 IACC0 9band 1 The mean IACC 0 value calculated from 9 frequency bands (570 Hz–2160
Hz). Attributes: envelopment, ensemble width, and spaciousness

5 IACC90 9band 1 The mean IACC 90 value calculated from 9 frequency bands (570 Hz–2160
Hz). Attributes: envelopment, ensemble width, and spaciousness

6 IACC0*IACC90 9band 1 The product of IACC0 9Band and IACC90 9Band. Attributes: envelopment,
ensemble width, and spaciousness

7 Mean Ang FrontWeighted 2 The mean absolute change to localization, compared with the reference
localization for the 36 noise bursts, with a linear weighting of decreasing
importance from 0◦ applied to each angle. Attributes: changes to source
locations, coverage angle

8 Mean Ang Diff Front60 2 The mean absolute change to localization, compared to reference localization
for 7 noise bursts between 0–30◦ and 330–350◦. Attributes: changes to
source locations, coverage angle

9 Hull 1 The convex area of the localized 36 noise burst plotted on a unit circle.
Attributes: changes to source locations, coverage angle

10 CardKLT 1 The contribution in percent of the first eigenvector from a Karhunen-Loeve
Transform (KLT) decomposition of four cardioid microphones placed at the
listening position and facing in the following directions: 0◦, 90◦, 180◦, and
270◦. Attributes: envelopment and spaciousness

11 Mean Entropy 1 The mean Shannon entropy value measured from both binaural signals.
Attributes: envelopment

12 TotEnergy 1 RMS of pressure value measured by a pressure microphone. Attributes:
envelopment

13 Mean RMS diff 2 The mean absolute change to root mean square (RMS) pressure compared
with the reference RMS pressure for the 36 noise bursts. Attributes:
changes to source locations, coverage angle

14 Mean SpecRollOff 1 The mean magnitude of the FFT from both binaural signals. Attributes:
timbre.

Table 5. QESTRAL probe signals.

No. of
Probe signal channels Description

1 5 36 pink noise bursts pairwise
constant power panned from
0◦ to 360◦ in 10◦ increments.

2 5 Decorrelated pink noise (10
seconds in duration) replayed
over all channels.

facilitated trialling of multiple metric combinations; and
(iv) allowed the relative contribution of each metric to each
PC to vary freely so that an optimal weighting could be
identified. The partial least squares (PLS) approach was
chosen since it meets all of these requirements [31] [32]. A
regression model was calculated using all 14 metrics and
14 PCs (one PC per metric). Fig. 4a shows that with all
metrics and PCs it was possible to explain approximately
81% of the total variance in the listening test data; this is
equivalent to a correlation of r ≈ 0.9. However it was still
possible to explain approximately 74% of the variance (r
= 0.86) using just 2 PCs. The target specification RMSE

(∼14 % or less) was achieved using all 14 PCs (RMSE =
10.66 %) but, as can be seen in Fig. 4b, it was possible to
achieve the target RMSE by simplifying the model to use
just 2 PCs. The model was therefore recalculated using 2
PCs and an iterative approach was taken to reducing the
number of metrics.

At each iteration, the model’s performance was com-
pared to the target specifications. If they had not been met
then the VIF value and weighted beta coefficient (BW) of
each metric was examined and the least significant metrics,
and those with the highest multi-co-linearity, were removed
(the value and polarity of each BW indicates the statisti-
cal importance and polarity of the relationship between the
corresponding metric and the dependent variable, quality).
The iterations are summarized in Table 12 in the Appendix.
Cross-validation correlation, and RMSE results, indicating
the model’s likely performance with unseen data, are also
provided.

After the final iteration, the model used just 5 metrics
and 2 PCs. This model is given by:

q = 361.887c − 23.017e − 0.002153s + 0.352a

+ 695.407r + 89.069916 (2)
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Fig. 4. For the initial regression model: number of PCs vs. (a) explained variance and (b) RMSE (%).

Table 6. Weighted beta coefficient values (BW) and regression
coefficients (B) for the metrics used in the QESTRAL model

after the final modeling iteration.

Regression
Variable Metric BW B

c IACC0 9band 0.336 61.887
e Mean Entropy −0.215 −23.017
s Mean SpecRollOff −0.211 −0.002153
a Mean Ang Diff Front60 0.339 0.352
r Mean RMS Diff 0.213 695.407
constant 89.069916

where q is predicted quality and c, e, s, a, and r are as
in Table 6, which also lists BW and the regression coeffi-
cients (B). The BW values show that “IACC0 9band” and
“Mean Ang Diff Front60” were the most statistically im-
portant metrics in the model. A correlation loading plot
suggests that the first PC (accounting for 73% of quality) is
likely to correspond to spatial attributes and the second PC
(accounting for just 2%) is likely to be timbral.

2.5 Correction of Compression Effect
A compression effect was observed, which caused the

predicted qualities of the highest-quality stimuli, rated in
the range 75%–100%, to be compressed to approximately
75%–90% (e.g., the hidden reference recordings were pre-
dicted at 91% quality rather than 100%). It is suggested
that this effect is likely to relate to an insensitivity of the
metrics/probes to very small degradations of spatial audio
quality. It was desirable to remove the effect, if possible,
in order to increase the model’s accuracy for high-quality
stimuli. A curve was fitted (r2 = 0.74) to a plot of pre-
dicted data against measured data, to quantify the nature of
the compression, and the equation of the inverse curve was
used as a corrective transform. The predicted quality after
correction, Q, is given by Eq. (3).

Q = 14.102e0.022q − 0.069 (3)

This correction was successful in improving the perfor-
mance of the model, producing a correlation of r = 0.89

Fig. 5. Performance of the corrected QESTRAL model: predicted
scores (QESTRAL model corrected) vs. quality ratings elicited in
listening tests.

and an RMSE of 11.06%. It could, perhaps, be argued that
the correction potentially limits the model’s validity and
generalizability but it is believed that any negative effects
will be mitigated by the large number and varied range of
SAPs and program items used to generate the listening test
data on which it was built.

3 EVALUATION OF THE QESTRAL MODEL’S
PERFORMANCE

The performance of the final corrected QESTRAL
model, with the listening test data on which it was built,
is illustrated in Fig. 5. As shown in Table 7, the target spec-
ification has been achieved. For some data points, how-
ever, the differences between predicted scores and elicited
ratings are large, and so the following sections evaluate
the model’s performance across individual SAP groups,
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Table 7. Corrected QESTRAL model vs. target specifications.

Criterion QESTRAL model Target specifications

Correlation (r) 0.89 ≥ 0.86
RMSE (%) 11.06 % ≈ 14 % or less
VIF (mean) 1.59 (range: 1.03 to 2.03) ≈ 1
No. of metrics 5 Low
No. of PCs 2 Low

program item types, and listening positions and compare it
with sound quality models created by other researchers.

3.1 Performance across SAP Types
The QESTRAL model performs best in the prediction

of scale anchor processes (Table 8). This is to be expected
since, during the listening tests that generated the data on
which the model was built, the anchors were assessed more
often than the other stimuli. The model also shows a high
correlation (r = 0.88) and low RMSE (9.83%) with SAPs
that combine multiple processes (group 11). This is promis-
ing: group 11 contains combinations of all of the other
SAPs and can be seen as a representation of the model’s
ability to predict the audio quality likely to result from the
confounded SAPs that would occur in typical consumer
multichannel audio systems.

The model has a large negative correlation (r = -0.92) and
the highest RSME (23.17%) for virtual surround algorithms
(group 10). The number of samples (n) in this group is very
small (less than the number of metrics in the model) and so
this result should be treated with caution, but it suggests that
the effects of virtual surround algorithms on audio quality
are rather different in nature from those of the other SAPs
investigated. If further research indicates that this is the
case then it might be appropriate to add additional metrics

Table 8. Correlation (r) and RMSE of the QESTRAL model
with each SAP group (n = number of samples).

Group SAP type n r RMSE (%)

1 Down-mixing from
5 CH

35 0.86 12.68

2 Multichannel audio
coding

37 0.86 8.68

3 Altered loudspeaker
locations

29 0.85 9.28

4 Channel
rearrangements

19 0.63 13.87

5 Inter-channel level
miss-alignment

16 0.93 17.50

6 Inter-channel
out-of-phase
errors

16 0.94 5.25

7 Channel removal 22 0.66 11.57
8 Spectral filtering 13 0.86 13.36
9 Inter-channel

crosstalk
11 0.67 15.82

10 Virtual surround
algorithms

4 –0.92 23.17

11 Combinations of
1–10

70 0.88 9.83

12 Scale anchors 36 0.99 4.83

to the model. It is possible that a previous iteration of the
model might have predicted virtual surround quality more
accurately but, as can be seen from Table 12, the cost of
using a previous iteration would be a less good fit overall.

3.2 Performance across Program Item Types
As shown in Table 9, the QESTRAL model performs

well across all program item types. It is most accurate for
SAPs applied to rock/pop music and least accurate (but still
good) for TV sport and classical music. It does, however,

Table 9. Correlation (r) and RMSE of the QESTRAL model for each program item (n = number of samples).

No. Genre Type Scene Type Description n r RMSE (%)

1 TV Sport F-F Excerpt from Wimbledon (BBC catalog).
Commentators and applause. Commentators panned
mid-way between L, C, and R. Audience applause
covers 360◦.

73 0.88 11.05

2 Classical Music F-B Excerpt from Johann Sebastian Bach – Concerto No.4
G-Major. Wide spatially-continuous front stage
including localizable instrument groups. Ambient
surrounds with reverb from front stage.

69 0.86 13.01

3 Rock/Pop Music F-F Excerpt from Sheila Nicholls – Faith. Wide
spatially-continuous front stage, including guitars,
bass, and drums. Main vocal in C. Harmony vocals,
guitars, and drum cymbals in Ls and Rs.

72 0.93 8.81

4 Jazz/Pop Music F-B Excerpt from Max Neissendorfer and Barbara Mayr –
I’ve Got My Love To Keep Me Warm. Live music
performance. Wide front stage. Ambience from room
and/or audience in rear loudspeakers.

33 0.92 10.94

5 Abstract F-F Excerpt from Jean Michel Jarre – Chronology 6. Very
immersive. Sources positioned all around the listener.
Some sources are moving.

31 0.92 11.23

6 Film F-B Excerpt from Jurassic Park 2 – The Lost World. Dialog
in C. Ambience, sound effects, and music in L, R, Ls,
and Rs.

30 0.92 9.10
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Fig. 6. Program-specific under/over-estimation of quality: (a) SAP where quality prediction is too high for TV sport (o) and rock/pop
music (x) but too low for classical music (�); (b) SAPs where quality prediction is accurate for rock/pop music (x) but often too low for
classical music (�).

have a weakness: as noted in the previous paper [1], some
SAPs degrade quality more for some program items than
for others, but the model has no input variable related to pro-
gram type and so is incapable of making program-specific
predictions. This insensitivity to program type contributes
to the model’s overall RMSE since its quality prediction for
a particular SAP might be too high for one program item
and too low for another.

Fig. 6a illustrates, for one SAP, this program-specific
quality over-estimation (for TV sport and rock/pop music,
having foreground sources in the rear channels) and under-
estimation (for classical music, having only reverberation in
the rear). Fig. 6b provides a further illustration for a collec-
tion of five SAPs for which the model’s quality predictions
are accurate for rock/pop music but sometimes noticeably
low for classical music (which for these SAPs was rated at
100% by listeners); again this appears to relate to the type
of material in the rear channels.

At this point it is reiterated that although this
program-type insensitivity contributes to the RMSE in the
QESTRAL model, the target specifications have been
achieved and the model’s accuracy across program types
is good. However, in applications where multiple models
would be acceptable, it is likely that accuracy could be in-
creased by generating one model for program items with
foreground sources in the rear channels and another for
items with only background sources in the rear. It is pos-
sible that the use of two alternative sets of probe signals
might also be appropriate.

3.3 Performance across Listening Positions
Two listening positions were included in the listening

test data on which the QESTRAL model was built: central
(with respect to the loudspeaker layout) and 1 m to the
right of center. Two corresponding positions were used to
capture the probe signals employed by the model. As shown
in Table 10 the model’s predictions have good correlation
to the measured quality at both of these positions.

Table 10 Correlation (r) and RMSE of the QESTRAL model for
each listening position (n = number of samples).

Listening
position Location n r RMSE (%)

1 Center 157 0.89 13.44
2 1 m to the right of center 151 0.88 7.86

3.4 Performance Compared to Other Models
Table 11 shows how the QESTRAL model compares

with the models reviewed in Sec. 1. The correlation (r)
between predicted and elicited quality for the QESTRAL
model is similar to, and in three cases better than, that
for the other models. The RMSE is slightly higher for the
QESTRAL model but it has been evaluated over a much
wider range of SAPs and so this is, perhaps, to be expected.

3.5 Improving the Model’s Performance
From the preceding subsections it can be seen that likely

areas for improvement are the model’s performance with
virtual surround material and its sensitivity to program type.
The next steps in development should therefore be (i) to
gather additional data relating to virtual surround material
and to adjust the model accordingly; (ii) to calibrate sep-
arate models for F-B and for F-F program material; and
(iii) to investigate the use of program-type-specific probe
signals if the separately-calibrated models are found lack-
ing. Once these improvements have been made, validation
against a new dataset is likely to be appropriate.

4 SUMMARY AND CONCLUSIONS

The QESTRAL system is intended to be an artificial-
listener-based evaluation system capable of predicting the
perceived spatial quality degradations resulting from SAPs
commonly encountered in consumer audio reproduction.
This paper has demonstrated that previously-obtained data,
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Table 11. Performance of the QESTRAL model vs. that of the models reviewed in Sec. 1.

PEAQ PEAQ PEAQ Frontal Surround
multichannel multichannel multichannel spatial spatial Timbral QESTRAL

PEAQ Quality Advisor (neural net.) (linear est.) (Seo et al.) fidelity fidelity fidelity model

Correlation (r) 0.67–0.86 0.93 0.85 0.79 0.88 0.91 0.95 0.95 0.89
RMSE (%) – 9 5.09 5.44 5.18 9.33 8.87 7.72 11.06

quantifying the degree of quality degradation resulting
from a wide range of such SAPs, can be used to build
a regression model of perceived spatial audio quality, in
terms of previously-developed metrics, that, in conjunction
with two simple probe signals, can form the core of such
an evaluation system.

PEAQ, the adopted standard algorithm for the objective
assessment of perceived audio quality, achieves a maximum
correlation level of r = 0.86. Any new model should there-
fore ideally achieve a similar correlation level, together with
an RMSE similar to or less than the average inter-listener
error in SAP quality assessment (∼14 %). For generaliz-
ability it should have a mean VIF close to 1 and employ as
few metrics and PCs as possible.

Commonly-encountered SAPs can have a large deleteri-
ous effect on several spatial attributes including source lo-
cation, envelopment, coverage angle, ensemble width, and
spaciousness. They can also impact on timbre and it is pos-
sible that timbral changes can influence spatial perception.
A spatial quality model for use with such SAPs should
therefore employ metrics related to all of these attributes.

A regression model of perceived spatial audio quality
using 14 metrics incorporating 14 PCs can deliver a cor-
relation of r = 0.90 with an RMSE of 11% (2 significant
figures). However, a potentially more generalizable model,
employing just 5 metrics (with a mean VIF of just 1.59)
and 2 PCs (likely to correspond to spatial attributes and
timbral attributes), can still provide r = 0.89 with the same
RMSE, once a simple transformation has been employed to
correct for an observed compression effect related to SAPs
producing only small quality degradations. At this stage
of the research, the model’s accuracy has been tested only
against the data from which it was developed and subsets of
that data. However, its predicted generalizability has been
shown to be good. After further improvements, in line with
the suggestions below, evaluation against a new dataset is
likely to be appropriate.

The metrics employed in this corrected model encom-
pass all of the attributes listed above. The most important
metric relates to source location and coverage angle. The
second most important metric is IACC-based and relates to
envelopment, ensemble width, and spaciousness. The least
important, a spectral measure, relates to timbre (which is to
be expected, since the degrading processes under consid-
eration are largely spatial in nature and the modeled data
come from experiments in which listeners were specifically
instructed to rate spatial quality).

The corrected model predicts quality degradations result-
ing from many SAP types, including combination SAPs,
well. It is weaker in its prediction of degradations caused

by virtual surround algorithms, suggesting that the effects
of virtual surround algorithms on audio quality are rather
different in nature from those of the other SAPs investi-
gated. However, too few virtual surround data are available
to draw firm conclusions here; further research is required.

The model predicts degradations to a multitude of pro-
gram types well (r ≥ 0.86 for each) but it is clear that, for
some SAPs at least, degradation is dependent on program
type and, in applications where multiple models would be
acceptable, it is likely that accuracy could be increased by
generating one model for program material with foreground
sources in the rear channels and another for material with
only background sources in the rear. Program-type-specific
probe signals might also be appropriate.

Spatial audio quality perceived at multiple listening
positions is predicted well and the QESTRAL model’s
overall performance is on a par with that of previous audio
quality models.
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Dewhirst, P. Jackson, S. Bech, D. Meares and S. George,
“Spatial Audio Quality Perception (Part 1): Impact of Com-
monly Encountered Processes,” J. Audio Eng. Soc., vol. 62,
pp. 831–846 (2014 Dec.).
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7 APPENDIX

Table 12 details each iteration of the model’s development in terms of the characteristics and performance of the model,
observations made, and actions taken.

Table 12 QESTRAL model development iterations.

Correlation/ RMSE/ No. of
Cross- Cross- Metrics

validation validation used in
correlation (r) RMSE (%) MeanVIF calc PCs Observation Action

Initial
calculation

0.90/0.88 10.66/11.43 – 14 14 The model was over complicated. A
model of similar acceptable
performance can be achieved
using 2 PCs.

Recalculate the model
using 2 PCs.

Iteration 1 0.86/0.85 12.45/12.72 – 14 2 IACC90 9band, Hull and
TotEnergy were found to be
statistically insignificant.

Recalculate the model with
IACC90 9band, Hull and
TotEnergy removed.

Iteration 2 0.86/0.85 12.45/12.68 – 11 2 IACC90 was found to be
statistically insignificant.

Recalculate the model with
IACC90 removed.

Iteration 3 0.86/0.85 12.48/12.71 51.61 10 2 VIF for IACC0*IACC90 and
IACC0*IACC90 9band was very
high and importance (BW) very
low.

Recalculate the model with
these metrics removed.

Iteration 4 0.86/0.86 12.33/12.56 10.84 8 2 Model shows same performance but
was simpler. VIF between
IACC0 9band and IACC0 was
high. IACC0 had lowest
importance of the two. They were
also very correlated.

Recalculate the model with
IACC0 removed.

Iteration 5 0.86/0.86 12.32/12.56 3.62 7 2 IACC0 9band and CardKLT were
highly correlated and also
exhibited a VIF higher than
desired. CardKLT had lowest
importance.

Recalculate the model with
CardKLT removed.

Iteration 6 0.86/0.86 12.16/12.40 2.79 6 2 The model was improved and
simpler. Mean Ang Diff FW and
Mean Ang Diff 60 were both
important metrics.
Mean Ang Diff FW had a high
correlation with
Mean Ang Diff 60 and
IACC0 9band, and also a VIF
higher than desired.

Recalculate the model with
Mean Ang Diff FW
removed.

Iteration 7 0.87/0.86 12.12/12.34 1.59 5 2 The model was improved and
simpler. There was a high
correlation between
Mean Entropy and
IACC0 9band. VIF values were
acceptable. Mean Entropy had
the lowest importance of these.

To simplify the model
further, recalculate the
model with
Mean Entropy removed.

Iteration 8 0.86/0.85 12.39/12.62 – 4 2 The model was simpler but the
performance is reduced.

Return to iteration 7 and
stop.
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