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Although line array systems are in widespread use today, investigations of the require-
ments and methods for accurate modeling of line sources are scarce. In previous publications
the concept of the generic loudspeaker library (GLL) was introduced. It is shown that on the
basis of directional elementary sources with complex directivity data finite line sources can
be simulated in a simple, general, and precise manner. Measurement requirements are
derived, and the limitations of this model are discussed. In addition, a second step of
refinement is presented, namely, the use of different directivity data for cabinets of identical
type based on their positions in the array. All models are validated by measurements. The
approach presented is compared with other proposed solutions.

0 INTRODUCTION

With the advent of modern line arrays, sound rein-

forcement systems reached a new level of flexibility and

performance, but also of complexity. Mechanical and DSP-

based control capabilities opened the door, for example,

to more effective solutions for speech transmission in

reverberant spaces and to rapid deployment with higher

reproduction quality in outdoor applications. But these

advantages came at the cost of higher complexity in

the configuration and use of the systems. As a result, simu-

lation and measurement tools have become a necessity

when designing and verifying such complex loudspeaker

systems.

But modeling a line array is not trivial because it can-

not be considered as a point source like a conventional

loudspeaker. A line array represents a linearly extended

sound source of finite size that is typically used into its

near field. Due to the size, directivity, and weight of a

complete line array, acquiring measurement data for the

system as a whole is impractical as well.

Therefore new measurement and modeling methods

must be developed. Besides the very basic approach of

reducing a full line array to a point source, the Huygens

composition is also practiced. Essentially one tries to

measure and model the wavefront for each type of cabinet

using many elementary point sources [1]–[3]. This model

can describe both the near field and the far field of the

loudspeaker, but usually it lacks generality in several

aspects, as will be shown. Related more advanced techni-

ques based on Rayleigh integrals over imagined planar

surfaces in front of a cabinet have been implemented

[4]–[6], but they still suffer from similar shortcomings.

We present a practical method of line array modeling.

Based on the concepts of the generic loudspeaker library

(GLL) [7], a description language for loudspeaker perfor-

mance, and DISPLAY 1.6 software [8], [9], our approach

uses directional point sources with complex directivity

data (CDPS model). We show that by representing each

type of cabinet by a full-sphere balloon measurement with

magnitude and phase data the radiation behavior of the

line array can be modeled easily and directly.

This concept is presented in two steps. First we derive

mathematically how a line source of finite size can be

decomposed into a set of smaller line sources, where

each subsource can be measured and applied in its far

field. We emphasize that the use of both magnitude and
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phase data is crucial to predict the near- and far-field

behavior of the system as a whole. In addition, simula-

tions in MATLAB [10], EASE SpeakerLab [11], and the

MATLAB-based calculation engine of DISPLAY 2.0

[12] demonstrate the practical feasibility of the approach

and its limitations.

In a second step the data for several real-world line

array systems are used to compare prediction results with

measurements. Here we also introduce another important

finding, which allows us to increase simulation accuracy

with a simple modification. We show that the measure-

ment data for the outer cabinets at the top and bottom of

the array can deviate significantly from those for the inner

cabinets. This is mainly due to the varying acoustic sup-

port offered by neighboring cabinets and shadowing

effects. Some improvement can already be accomplished

when during the data acquisition the loudspeaker cabinet

is measured with one top and one bottom neighbor in

place. This is underlined by a comparison between pre-

diction and measurement results. But considering the

position of individual cabinets within the line array can

further improve the match between simulation and mea-

surement, as we will demonstrate in a detailed compari-

son of this refined approach with the measurement results

for the entire system and the results of the simple calcula-

tion approach using identical cabinets. As a conclusion we

make some comparisons with alternative methods, such as

the Huygens approach.

To summarize, Section 1 gives a general overview of

the concept of line sources and how they can be modeled.

Section 2 reviews the GLL concept and introduces the

CDPS method to predict the sound field radiated by a line

array. We demonstrate the practical accuracy of this ap-

proach in Section 3 and discuss alternative models in

Section 4.

1 LINE SOURCES

In this section we review the concept of the sound-

radiating line source and its practical realization as a line

array.

1.1 General Description

In a simple formulation the complex sound pressure ~p
created by an ideal line source of finite size L at a given

receiver location in polar coordinates (r, y, j) can be

described by

~pðr; y; tÞ ¼ ~A0

ZL=2
�L=2

1

r0
ejðot�kr0Þ dx (1)

where r0 � r0(x) is the distance between a point on the line

source and the receiver while we integrate over the length

of the line in increments dx (see Fig. 1). Furthermore o is

the radial frequency, k the wavenumber, t the time, and ~A0

the complex amplitude of the source [13]. Due to the

symmetry of the arrangement the relationship is indepen-

dent of the angle j.

This integral cannot be solved directly. Analytical solu-

tions are possible for asymptotic cases, such as under far-

field condition. In any other case the integral has to be

evaluated numerically.

1.2 Far-Field Approximation

In the far field of the source one can assume that the

distance between receiver and source location is much

greater than any characteristic dimension of the source.

Assuming r � L, one can substitute r0 by r in the denomi-

nator of the integrand in Eq. (1). The phase term in the

exponent requires more care. Its first-order approximation

for large r is r0 ¼ r � x sin y. We obtain

~pðr; y; tÞ ¼
~A0

r
ejðot�krÞ

ZL=2
�L=2

ejkx sin y dx: (2)

One can see here already that the result will be a spherical

wavefront, represented by the first factor, which is

weighted by an angle- and frequency-dependent complex

correction, represented by the second factor. The solution

for the integral is

~pðr; y; tÞ ¼
~A0L

r

sin 1
2
kL sin y

� �
1
2
kL sin y

" #
ejðot�krÞ: (3)

As a result the time-independent acoustic pressure ampli-

tude P ¼ j~pj for the far field can be written as

Pðr; yÞ ¼ PaxialðrÞ�ðyÞ (4)

where

�ðyÞ ¼ sin 1
2
kL sin y

� �
1
2
kL sin y

�����
����� (5)

is the directional factor as a function of the angle y and

PaxialðrÞ ¼ j ~A0jL
r

(6)

is the amplitude of the on-axis far-field pressure ampli-

tude as a function of the distance r. It is obvious that in
the far field the axial pressure is proportional to 1/r. This
means that the line source can be approximated by a point

source when considering locations in the far field.

Fig. 1. Geometry of Eq. (1).
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1.3 Numerical Solution

In the near field of the source, where r is of the same

order of magnitude as L, Eq. (1) can only be solved

numerically. For this purpose the integral is discretized

and transformed into a sum,

~pðr; y; tÞ ¼ ~A0

L

N(
N

i¼1

1

r0i
ejðot�kr 0i Þ: (7)

The accuracy of this approach is governed by the resolu-

tion L/N. It is commonly accepted that for a given upper

frequency limit or wavelength, the resolution should be

L/N 4 l/2.

1.4 Modeling Line Arrays

So far we have discussed the fundamentals of ideal finite

line sources. In reality the approximation of an ideal line so-

urce, the so-called line array, finds widespread use. Several

loudspeaker cabinets are combined to form a linear or even

curved array of sources. Individual cabinets may reproduce

the behavior of an ideal line source depending on the des-

ign, the frequency range considered, and the intended use.

For an array the overall sound pressure at the receiving

location is typically the sum of the sound pressure func-

tions of the individual elements k of the array,

~psumðr; y; tÞ ¼(
M

k¼1

~pkðr; y; tÞ (8)

where each contribution ~pk represents a particular cabinet
in the line array of M elements.

Modeling a single line source or a combination of

line sources as given by Eq. (1) is not simple. We can

distinguish between three fundamentally different appro-

aches used for the prediction of the radiated sound field.

• The point-source approach according to Eqs. (3)–(6) in

several variations, which is always based on a far-field

approximation on a certain level. The complex-directiv-

ity point-source (CDPS) model, which we describe in

the next section, is an advanced derivation of this.

• The so-called Huygens method, which essentially uses

Eq. (7) to reproduce the sound field of the array. More

precisely, one considers the individual contributions to

the sum as omnidirectional point sources that form a

coherent wavefront [1]–[3].

• The so-called Rayleigh integral method, which is based

on the Kirchhoff–Helmholtz equation. In general, at

any given location the field radiated by a source is

characterized by the integral of the sound potential over

a closed surface around the source [4]–[6].

2 COMPLEX-DIRECTIVITY
POINT-SOURCE MODEL

This part introduces the concept of the complex-

directivity point source (CDPS). We derive the the-

oretical background of this model for the case of line arrays

and demonstrate its accuracy by means of comparisons

between sound-field measurements and predictions.

2.1 Overview

2.1.1 Point-Source Models

The description of sound sources by means of a point-

source model has a long history. The following equation

governs the propagation of a spherical wavefront as gen-

erated by a point source [13]:

~pðr; f Þ ¼
~Aðj; y; f Þ

jrj e�jkr: (9)

Here ~p is the sound pressure at the receiver location r and
as a function of frequency f. ~A is the complex radiation

function depending on angles j ¼ j(r) and y ¼ y(r). The
distance dependence of the pressure function is expressed

by the denominator as well as by the phase term kr, where
k is the wave vector.

In the computer model the spectral and directional

properties of the point source are usually represented in a

discrete form regarding frequency and angle. Discretizing

Eq. (9) yields

~pðr; f Þ ¼ g½Âðjk; yl; fmÞ; r; f �
jrj e�jkr (10)

where Â is now a complex-valued matrix Âk;l;m based on

discrete angles jk and yl and frequencies fm. The inter-

polation function g provides a smooth transition between

the given data points for intermediate locations.

From this it becomes clear that on the one hand the

interpolation function has to be chosen carefully in order

to provide smooth results and on the other hand the data

contained in Â have to fulfill certain requirements in order

to allow for interpolation by g afterward. In particular the

sampled data have to include all the information required

for the subsequent modeling process. In practice this

information, so-called polar data, is gathered typically

either by measurement or by a computer model of the

sound source.

When interaction between sources such as in Eq. (8)

does not have to be modeled and phase information is

of no relevance, magnitude-only data Â ¼ jÂj and g ¼ jgj
will suffice since considerations are restricted to the mod-

ulus of ~p.
Based on that, some approaches utilize only the run

time phase component kr in order to simulate source

interaction based on magnitude-only directivity data. This

assumes that the inherent phase response of the source is

negligible and that the source data do not include any

additional phase due to propagation delay, that is,

arg ~A � 0. In practice this assumption is often not correct

and cannot be applied to cases such as Eq. (3), where the

inherent phase response of the source cannot be neglected

but is crucial to model combinations of multiple sources.

In consequence the CDPS model is used to describe the

properties of a sound source in its entirety, that is, also

with respect to phase. Here no assumptions are made

regarding the phase component of Â, but it is assumed

that the phase information can be provided by measure-

ment (or a radiation model of the loudspeaker cabinet) at

sufficient accuracy.
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As will be shown in the following sections the CDPS

model provides a straightforward and fast means to simu-

late the radiation characteristics of line arrays. This appli-

cation is governed by the combination of Eq. (8) and (10)

and can be expressed generally by

~psumðr; f Þ ¼(
M

n¼1

gðÂnÞ
jr � rnj e

�jkn ðr� rnÞ (11)

where rn is the location of the point source representing a

particular element n and Ân is the complex radiation func-

tion in matrix form for the far field of that element.

2.1.2 Generic Loudspeaker Library (GLL)

In previous publications [9], [14], [15] the authors

showed the relevance of complex data, that is, magnitude

and phase data, for the prediction of the sound field of

interacting sources. At the same time conditions for the

representative data Â were derived, in particular regarding

the frequency resolution, the angular resolution, and the

measurement (sampling) distance in order to be able to

interpolate phase data in a meaningful way [7], [14].

A new framework, the so-called generic loudspeaker li-

brary, was presented as well in order to describe sound

sources in this manner formally [16]. Others have also

demonstrated the increased accuracy of using complex

data in simple DPS (directional point source) models to-

gether with interpolation methods [17] and investigated

the spatial/frequency resolution requirement [18], [19].

We believe that this is the first time all these issues have

been addressed together in a clear manner.

The GLL basically serves as a format or, more pre-

cisely, as a language to describe sound sources and com-

binations of sources, such as multiway loudspeakers,

column loudspeakers, or arrays of loudspeakers. It allows

to include complex directivity data for each source in

adequate angular and spectral resolutions. The loud-

speaker cabinet as a whole or individual transducers can

be modeled as point sources. As a result this approach

offers a new degree of freedom, namely, the possibility

to model electronic configurability, such as with respect

to equalization and crossover filters, as well as mechan-

ical configurability, such as regarding the actual physical

arrangement of multiple cabinets in a linear or curved

array [20].

With the GLL implementation of the CDPS model in the

acoustic simulation software EASE [21] the CDPS method

has found, for the first time, widespread propagation be-

yond manufacturers’ and universities’ own software tools.

2.2 Application to Line Sources

It is quite obvious that if a loudspeaker can be approxi-

mated by a point source according to Eqs. (9) and (10), an

array of such loudspeakers will—following the fundamen-

tals of linear superposition—show the radiation behavior

as described by Eq. (11), assuming we can incorporate the

effects of neighboring sources on each other.

In practice many arrays of loudspeakers are claimed to

be close to the mathematically ideal line source, which

means that over the usable frequency range of the device

the array acts approximately like a single line source. The

usefulness of this attribute for curved arrays is beyond the

scope of this paper. We will now show that any real-world

line source can be described by the CDPS model.

2.2.1 CDPS Decomposition

Eq. (1) can be rewritten identically to a sum of partial

integrals, each representing, for example, a cabinet of the

line array,

~pðr; y; tÞ ¼ ~A0(
M

n¼1

Z�L=2þnL=M

�L=2þðn�1ÞL=M

1

r0
ejðot�kr0Þ dx: (12)

As a second step we can apply a coordinate transforma-

tion that places the origin central to the boundaries of

each partial integral, xn ¼ x � [�L/2 þ (n�1/2)L/M].

The corresponding transformations are applied to r(x),
y(x), and r0(x) in the same manner. This yields

~pðr; y; tÞ ¼ ~A0(
M

n¼1

Zl=2
�l=2

1

r0n
ejðotn�kr0nÞ dxn: (13)

Here the subscript n denotes the dependence on the partic-

ular coordinate system. The parameter l ¼ L/M represents

the length of the individual element, which is identical to

the spacing between centers of adjacent elements.

For each partial integral we can make the far-field

assumption that r0n � l so that 1=r0n � 1=rn and

expð�jkr0nÞ � exp½�jkðrn � xn sin ynÞ�. Also we are free

to rename the integration variable xn as x,

~pðr; y; tÞ ¼ ~A0(
M

n¼1

1

rn
ejðotn�krnÞ

Zl=2
�l=2

ejkx sin yn dx: (14)

After that we can solve the partial integrals and obtain

~pðr; y; tÞ ¼ ~A0l(
M

n¼1

1

rn
ejðotn�krnÞ sin

1
2
kl sin yn

� �
1
2
kl sin yn

: (15)

Obviously this sum can be understood as a set of point

sources with the directivity function

~�ðyÞ ¼ sin 1
2
kl sin y

� �
1
2
kl sin y

: (16)

This proves that Eq. (11) also applies when a continuous

line source is subdivided into smaller line sources. But it

is only valid in the far field of the partial source.

Note that this derivation does not incur any loss of

generality. The concept of subdividing the given integral

and solving for the far field of the individual element

is fully applicable to any continuous one-dimensional

source, such as curved lines.

Examples The following four figures demonstrate the

applicability of the CDPS decomposition using a few

selected examples. All of them show vertical polar plots

of the radiation of an ideal (vertical) line source at a
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radial scale of 40 dB. In all cases we compare the solution

provided by the CDPS model [Eq. (15)] with the detailed

numerical solution [Eq. (7)] of the original integral [Eq. (1)].

Fig. 2 shows the reproduction of a continuous source of

1-m length by four point sources with complex directivity

data at a measurement distance of 3 m. Although the

spacing of 0.25 m between the elements is significantly

larger than the half-wavelength at 2 kHz, the match is

very good. Fig. 3 shows the same setup at a measurement

distance of 1.5 m. At this distance the measurement point

begins to move into the near field of the individual ele-

ment. Accordingly deviations begin to appear. In contrast,

Fig. 4 shows the same configuration and distance but now

using eight elements with a size/spacing of 0.125 m.

Obviously an exact match is reestablished because the

far-field condition is fulfilled again. Finally Fig. 5 shows

Fig. 2. Comparison of line source integral (—) with approxima-
tion by four point sources with complex directivity (þþþ).
f ¼ 2 kHz, r ¼ 3 m, L ¼ 1 m. Note that spacing l ¼ 0.25 m is
larger than wavelength l ¼ 0.17 m.

Fig. 3. Comparison of line source integral (—) with approxima-
tion by four point sources with complex directivity (þþþ).
f ¼ 2 kHz, r ¼ 1.5 m, L ¼ 1 m. Note that at 1.5 m we are
entering the near-field zone of the individual source.

Fig. 4. Comparison of line source integral (—) with approxima-
tion by eight point sources with complex directivity (þþþ).
f ¼ 2 kHz, r ¼ 1.5 m, L ¼ 1 m. At 1.5 m an element size
l ¼ 0.125 m is sufficient.

Fig. 5. Comparison of line source integral (—) with approxima-
tion by four point sources with complex directivity (þþþ).
f ¼ 10 kHz, r ¼ 8 m, L ¼ 1 m. Width and size of main lobe are
well reproduced with an element spacing l ¼ 0.25 m, even at
wavelength l ¼ 0.034 m.
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a different setup, namely, the comparison of four elemen-

tary sources using complex directivity data with the exact

solution at a frequency of 10 kHz and a distance of 8 m.

As can be seen clearly, main lobe and substructures match

very well, although the element spacing is an order of

magnitude larger than half the wavelength l/2.

2.2.2. Data Requirements

In order to describe a line source as characterized by

Eq. (3) or Eq. (15) by the discretized CDPS model

[Eq. (10)], a set of conditions must be fulfilled. These

originate in the specific properties of the line source, but

similar requirements are found for the far-field solution of

other types of continuous sources.

Complex Directivity Data First of all, phase data must

be included. This can be seen immediately from Eq. (16)

because ~�ðyÞ 6¼ j~�ðyÞj. The phase over angle y or freque-

ncy f is basically a step function that switches between

two states, 0 and p, at every zero of the directional factor.

Omitting this information will lead to erroneous results when

computing the linear superposition of multiple sources.

This is illustrated by Fig. 6, which shows the magnitude

and phase of the vertical polar response for a line source

of 1-m length at 2 kHz in the far field. Note that the phase

was compensated for the propagation delay and normal-

ized so that a phase value of 180� equals the polar origin,
and 0 equals 38 dB.

Angular Resolution Eq. (16) also gives an idea about

the angular resolution required for the discrete point-

source model [Eq. (10)]. Based on the directional factor

we can derive the angular spacing of the off-axis nulls,

where ~�ðyÞ ¼ 0. From there it is only a small step to

define the angular resolution needed for an accurate de-

scription by the directivity matrix Â.

The nulls of the angle-depending directional factor are

distributed according to

yi ¼ arcsin �i
c

fl

� �
; i ¼ 1; 2; . . . : (17)

Here yi denotes every angular location i where the direc-

tional factor vanishes. As an example, for a source length

l ¼ 0.2 m, a frequency f ¼ 10 kHz, and a speed of sound

c ¼ 340 m/s the first null occurs at y1 � 10�, the second at
y2 � 20�. For shorter sources the spacing of nulls

becomes wider for the same frequency (Table 1).

In order to avoid aliasing or undersampling errors, the

angular resolution must be high enough given the length

of the source l and the upper frequency limit. This resolu-

tion limit can be approximated by half the angular dis-

tance between the first and second minimum,

�ycrit ¼ 1

2
arcsin 2

c

fl

� �
� arcsin

c

fl

� �� �
: (18)

For this example an angular resolution of 5� could be just

sufficient. In general angular resolutions of Dy 	 Dycrit
should be used (Table 2).

Indeed, in practice another issue is equally important.

Because the main lobe (on axis, y ¼ 0�) becomes very

tight for high frequencies, the on-axis data must be cap-

tured carefully in order to obtain the actual on-axis level.

This is especially important for turntable measurements.

Table 3 shows some exemplary data calculated from

Eq. (16) for angles y close to 0�.
A small angular deviation from the exact on-axis direc-

tion will result in a lower on-axis level measurement,

Fig. 6. Magnitude (- - -) and phase (—) of an ideal, finite line
source of length L ¼ 1 m, at f ¼ 2 kHz, in the far field. Phase
was scaled so that 38 dB is equivalent to 0�. Note that phase
switches at every minimum.

Table 1. Angular locations of minima 1–5 for different source
lengths l at frequency f ¼ 10 kHz.

Length l, m 0.1 0.2 0.4 0.8

y1 19.9� 9.8� 4.9� 2.4�

y2 42.8� 19.9� 9.8� 4.9�

y3 — 30.7� 14.8� 7.3�

y4 — 42.8� 19.9� 9.8�

y5 — 58.2� 25.2� 12.3�

Table 2. Minimum required angular resolutions for different
source lengths l at frequency f ¼ 10 kHz.

Length l, m 0.1 0.2 0.4 0.8

Dycrit 10� 5� 2.5� 1�

Table 3. Attenuation at off-axis angles compared to on axis for
different source lengths l at frequency f ¼ 10 kHz.

Length l, m 0.1 0.2 0.4 0.8

Level at 1�, dB �0.04 �0.15 �0.61 �2.56

Level at 2�, dB �0.15 �0.61 �2.56 �13.7

Level at 3�, dB �0.34 �1.40 �6.32 —
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because the pressure function changes quickly with the

angle. Failing to measure the correct level of the maxi-

mum will increase the level of the sidelobes artificially

and thus lead to erroneous results later on.

Frequency Resolution Similar to the angular resolu-

tion we can derive a condition for the needed spectral

resolution from Eq. (16). In the frequency domain the

spacing of nulls corresponds to

fi ¼ i
c

l sin y
; i ¼ 1; 2; . . . (19)

where fi denotes the frequencies i for which the direc-

tional factor becomes zero. For the example of l ¼ 0.2 m

and c ¼ 340 m/s the frequency nulls occur at a spacing of

1700 Hz when considering an angle of y ¼ 90�. The
spacing is larger for smaller angles and for smaller source

lengths. Table 4 shows some exemplary data.

In order to resolve the spectral structure we have to

define the condition

�fcrit ¼ c

2l sin y
(20)

which means that in order to avoid aliasing problems

there should be at least two data points for every fre-

quency section enclosed by adjacent zero points of the

directional factor. This corresponds to minimum required

frequency resolutions Df 	 Dfcrit.
The highest resolution requirement occurs for y ¼ 90�,

�fcrit ¼ c

2l
(21)

which corresponds to 170 Hz for a 1-m line source. We

remark that practically all modern FFT-based measure-

ment systems provide frequency resolutions that are much

higher than this.

Frequency Averaging In acoustics the frequency reso-

lution is often based on fractional octave bands. It is im-

portant to understand when it is valid to average data such

as the modulus of the directional factor over a bandwidth.

One can imagine that the average over a frequency

range that includes less than half the spectral distance

between two nulls [Eq. (19)] can be used as a representa-

tive value. That is possible because the average will not

depend much on the actual limits of the averaging band-

width but rather follow the underlying function smoothly.

On the other hand, if the average is computed over a

frequency bandwidth of at least twice the angular distance

between two minima one can assume that the average will

be representative as well. The reason is that for a large

enough bandwidth additional variations of the underlying

function will not be significant.1 But for the intermediate

frequency range small variations of the limits of the aver-

aging bandwidth will lead to large variations of the aver-

age value, which in turn leads to meaningless data. This is

the “forbidden” frequency range. Figs. 7 and 8 show

examples for a bandwidth of one-third octave.

Given a bandwidth b in fractional octaves we can cal-

culate the exact center frequency of the related band that

has the width of the linear frequency resolution Df,

fc ¼ �f

2b=2 � 2�b=2
: (22)

Based on this we can determine directly for which fre-

quencies fc and fractional octave resolutions b averaging

is allowed. For the lower frequency limit the linear reso-

lution in Eq. (22) is given by half the spacing of minima

according to Eq. (20),

flower ¼ c

2l sin y
1

2b=2 � 2�b=2
: (23)

The upper frequency limit is given by twice the spectral

spacing between minima,

fupper ¼ 2c

l sin y
1

2b=2 � 2�b=2
¼ 4flower: (24)

In the intermediate range of flower < fc < fupper the

frequency data points are too coarse and will generate

aliasing errors due to the quickly varying average that is

sampled using points that are too far apart.2

As an example, for l ¼ 0.2 m, c ¼ 340 m/s, y ¼ 90�,
and a resolution of one-third-octave bandwidth b ¼ 1/3,

data can be averaged meaningfully below 3670 Hz and

above 14 700 Hz (Fig. 7). If the length of the source is

greater, these frequency limits will be reduced. They will

be increased when looking at smaller angles.

A selection of different values is shown in Table 5. It

is obvious that the forbidden frequency range depends

strongly on the angle and can thus not be understood as a

fixed range for a given source length l. In general, one can
derive two different regimes.

• For large sources (l > 2 m) averaging over wide band-

widths, such as 1/1 octave, may be useful to derive

representative data in a statistical way.

• For small to medium size sources (l < 0.5 m) averaging

over small bandwidths, such as 1/24 octave or 1/36

octave, may be used to smooth the frequency response

curve without losing significant information.

Table 4. Frequencies of minima 1–5 for different source lengths
l at frequency f ¼ 10 kHz and angle � ¼ 90�.

Length l, m 0.1 0.2 0.4 0.8

f1, Hz 3400 1700 850 425

f2, Hz 6800 3400 1700 850

f3, Hz 10 200 5100 2550 1275

f4, Hz 13 600 6800 3400 1700

f5, Hz 17 000 8500 4250 2125

1The choice of half or twice the spacing between adjacent

minima as a condition seems natural but is somewhat arbitrary.

Of course, higher requirements will lead to smaller quantitative

errors.
2The potential error can be quantified by approximating the

band average of Eq. (16) and analyzing its variations over the

frequency range.
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For intermediate averaging bandwidths, such as one-

third octave, most data will suffer from significant

sampling errors. That can only be avoided for carefully

selected angles and frequencies of interest. As an example

Fig. 8 displays the frequency response of Fig. 7 smoothed

to one-third octave. In the forbidden range the distance

between one-third octave center frequencies is too large to

capture the fundamental behavior of the average function.

In this case variations of up to 6 dB occur between adja-

cent data points.

Figs. 9 and 10 emphasize these findings on the basis

of real-world measurements. They show the off-axis

frequency response of a ribbon loudspeaker (Alcons

Fig. 7. Frequency response (—) of ideal line source of length l ¼ 0.2 m at an angle of 90� off axis in the far field. (
 
 
) bands of one-
third-octave width, (- - -) forbidden range from 3670 to 14 700 Hz.

Fig. 8. Smoothed frequency response (—) of ideal line source of length l ¼ 0.2 m at an angle of 90� off axis in the far field. Smoothing
bandwidth is one-third octave. (
 
 
) bands of one-third-octave width, (- - -) forbidden range from 3670 to 14 700 Hz.

Table 5. Forbidden frequency ranges, in Hz, for different source
lengths l, fractional octave bandwidths b, and angles �.

Bandwidth b

l ¼ 0.2 m l ¼ 0.8 m

flower fupper flower fupper

1/1 at y ¼ 20� 3500 14 000 900 3500

1/3 at y ¼ 20� 10 700 43 000 2700 10 700

1/24 at y ¼ 20� 86 000 344 000 21 500 86 000

1/1 at y ¼ 60� 1400 5600 350 1400

1/3 at y ¼ 60� 4200 17 000 1100 4200

1/24 at y ¼ 60� 34 000 136 000 8500 34 000
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Audio QR18, 0.5 m tall) at a vertical angle of 50�. In Fig. 9
minima are indicated by cursor lines. They seemingly

match with the expected frequency response. The spacing

of nulls should be about 890 Hz at this angle. Fig. 10 pre-

sents a continuous one-third-octave band frequency aver-

age of the measured response. This is to show that in the

forbidden range of 2–8 kHz data sampled in one-third-

octave steps have little meaning. Over this frequency

range the variations of the curve are too large and sam-

pling errors on the order of 6 dB can occur.

We remark that similar considerations with respect to

resolution and averaging also apply to loudspeakers with

a crossover, which can be regarded as very small line

arrays in the frequency range of the crossover.

Finally we need to emphasize that the preceding dis-

cussion regarding frequency averaging is only concerned

with magnitude data. If sources are to be combined coher-

ently, one will need to take care of phase data as well.

However, especially for a line source, averaging phase

data over a frequency bandwidth that contains a minimum

leads to arbitrary results because of the switching behav-

ior of the phase function [Eq. (16)].

Measurement Distance With respect to the measure-

ment distance we emphasize that the CDPS model is only

Fig. 10. Frequency response of AlCons Audio QR18 loudspeaker at 50� off axis normalized to 0� and smoothed at one-third-octave
bandwidth. Cursors denote center frequencies of standardized one-third-octave bands.

Fig. 9. Frequency response of AlCons Audio QR18 loudspeaker at 50� off axis normalized to 0�. Cursors denote minima of corre-
sponding ideal line source.
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valid in the far field of the particular source. This applies

to both measurement and prediction. Measurements of

the sources must be taken in the corresponding far field.

Calculation results will only be valid at points in the

approximate far field of the modeled source (see also

Figs. 2–4 and [14]).

However, we would like to emphasize once more that

this is typically not the far field of the entire device. A line

source may be subdivided into elements, for each of which

the far-field condition must hold. But nevertheless the near

field of the line source as a whole can be modeled correctly.

3 VALIDATION

In this section we will apply the CDPS model to a

typical line array system. Validation will be based on the

comparison of measurement data for the entire array with

modeling results for the array based on the far-field mea-

surements of the individual cabinets. We will be mostly

concerned with the frequency response and the polar data

in the vertical domain.

3.1 Small Installation Line Array

3.1.1. Overview

A curved array of 12 Martin Audio Omniline cabinets

[22] was used for this comparison, as depicted in

Fig. 11. The overall size of a cabinet is 0.12 m, the

length of the array is about 1.4 m.

Isolated Model First we predict the performance of

the complete system by using balloon measurements of

a single isolated cabinet. Although the match between

measurement and prediction turns out to be already satis-

fying, it is clear that this method of modeling the individ-

ual point sources cannot account for acoustic support and

shadowing effects caused by cabinets adjacent in the array.

Flanked Model Results can be improved when the

balloon data of a cabinet are acquired with the top and

bottom neighbors in place. Although the two outer cabi-

nets will be switched off and electrically short-circuited,

they will contribute indirectly to a more realistic radiation

behavior for the representative point source. We will call

this the flanked case and show that the average deviation

between measurement and simulation decreases compared

to the isolated case.

An example is given in Fig. 12(a) and (b), where the

vertical directivity maps for the isolated and flanked cases

are shown. The level attenuation relative to the on-axis

direction is displayed as a function of frequency and angle.

Positional Model Consideration of the rules of super-

position inevitably leads to a second step of improvement.

One should think that the acoustic radiation characteris-

tics of the outer cabinets in the array, especially the very

top and bottom elements, will be different from the ones

in the center. In consequence, another significant im-

provement can be reached by using different balloon data

for different cabinet positions in the array. This will be the

positional model. Such data can be measured as well,

though suitably accurate mechanical positioning methods

of an array with a weight of possibly some hundreds of

kilograms, often with the center of gravity distant from

the rotation point, do not exist.

The boundary-element method (BEM) [23] provides us

with a method of placing neighboring unexcited elements

around the active element and acquiring complex pressure

on any three-dimensional surface around that element.

Previous studies had shown that when the elemental

source has high enough directivity the isolated measure-

ment is valid [24]. Also it was shown that the radiation

behavior of a lower box is very close to that of a mirrored

version of the corresponding upper box and that central

boxes share similar radiation characteristics.

In this study elemental complex spherical data were

obtained for the top four boxes of a typically curved 12-box

array over the full bandwidth of the low/mid driver. An

average of the centrally positioned box data was also ob-

tained, resulting in five independent data sets. As an exam-

ple, Fig. 12(c) and (d) shows the vertical directivity maps as

utilized for the topmost element and the central elements.

The validity of the data at increased distances has been

checked by calculating the balloons at diameters of up to

32 m in BEM. The balloon data sets for various diameters

show very minor deviations with increasing distance (less

than 1 dB at distances of up to 32 m).

We could have measured isolated elemental data for the

high-frequency sections of the system. However, BEM

was applied to the high-frequency horn of an isolated

box with a simplified driving surface. The reason, apart

from the data already existing as part of the design pro-

cess, was that we free ourselves from the usual measure-

ment errors, such as position uncertainty and environmen-

tal factors. This advantage is particularly apparent at high

frequencies.Fig. 11. Polar measurement setup and array configuration.
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3.1.2 Frequency Response

Fig. 13(a) shows the measured absolute sensitivity of

the line array compared to the results predicted by the

three different models. At first glance one can already

see that the isolated model shows the largest deviations

whereas the flanked and positional models appear to be

much closer. This becomes clearer in the relative display

of Fig. 13(b), where the sensitivity data are normalized to

the measurement. For the on-axis direction the isolated

case shows an average error of about �3 dB, with maxi-

mum errors of up to 6 dB. The prediction based on the

flanked setup is typically within �2 dB, with peak errors

of maximally 3 dB. The best match is reached when

accounting for the position of a cabinet in the array. Here

the error is about �1 dB on average, with peaks of about

2 dB. A similar picture is given in Fig. 13(c) where the

error is averaged over a set of 41 data points, namely, the

relative errors within an opening angle of �20�.
The largest errors seem to occur in three fairly separate

frequency ranges.

Fig. 12. Vertical directivity maps. (a) Measured line array cabinet, isolated case. (b) Measured line array cabinet, flanked case. (c) Topmost
cabinet in line array, BEM modeled, positional case. (d) Averaged center cabinets of line array, BEM modeled, positional case.
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Fig. 13. (a) Measured sensitivity of line array (—) compared to predicted sensitivity, isolated (- - -), flanked (—), and positional
(- 
 -). (b) Predicted sensitivity of line array relative to measurement (—), isolated (- - -), flanked (—), and positional (- 
 -).
(c) Predicted sensitivity of line array relative to measurement, averaged over an opening angle of �20�, isolated (- - -), flanked
(—), and positional (- 
 -).

Fig. 12. Continued
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• In the low-frequency range of about 500 Hz shadowing

and acoustic support effects by neighbor elements in

the array seem to be particularly dominant. Since the

isolated model cannot model that, it shows the largest

deviations. The positional model is better in this respect.

• In the mid-frequency range of 2–4 kHz, where the cross-

over is located, deviations are larger for all models. The

isolated case being much worse, again due to a lack of

interference from nearby irradiated surfaces, there is not

a big difference between flanked and positional models.

We will see later that this is the region of maximum

elemental response deviation. A contribution to this er-

ror likely depends on the measurement accuracy of the

elements and the prediction accuracy of the array, which

is normally lower in the crossover range. That is because

the number of interacting sources basically doubles, and

accordingly the inherent elemental measurement errors

increase the overall error of the simulation.

• In the very high-frequency range above 10 kHz devia-

tions increase again. This has to be expected since the

measurement accuracy, and thus the prediction accu-

racy, becomes lower at very small wavelengths. Finite

spatial accuracy and the influence of environmental

factors during the measurement introduce noise and

inaccuracy, especially into the phase data, which propa-

gate through the prediction.

3.1.3 Polar Response

Fig. 14 compares the polar responses of measured and

predicted arrays for the isolated case. Analogously, Figs. 15

Fig. 14. Vertical polar plots of line array, isolated case (—) compared to measurement (—), (a) 500 Hz, (b) 1 kHz, (c) 2 kHz,
(d) 4 kHz, (e) 8 kHz, (f) 16 kHz.

J. Audio Eng. Soc., Vol. 57, No. 6, 2009 June 391

PAPERS LINE SOURCE SIMULATION



and 16 show overlays of the predicted vertical polar

responses with measurements for the flanked and positional

cases, respectively. These data were acquired from 100 Hz

to 20 kHz and are displayed on graphs with a 36-dB radial

scale. The angular scale denotes 0� for the on-axis direction
and �90� for the upward direction. For better comparison

the data were smoothed to one-sixth-octave bandwidth.

First we can state that all models match quite well with

the measurements. Qualitatively the line array behavior is

reproduced very well over the entire frequency range.

Similar to the frequency response before, there is an in-

crease in overall accuracy for the flanked model and, es-

pecially, for the positional model.

Naturally, errors are smaller for the front than for points

on the backside of the array. Although still being linear,

interaction effects on the backside of the cabinets cannot be

predicted so precisely using the assumption of coherent

point sources. Typically one has to expect rather an interme-

diate state between full coherence and random phase. This

error results in less pronounced extrema, both minima and

maxima, in the measurement compared to the prediction.

Deviations for the low-frequency range at about 500 Hz

have the same reason as explained in the frequency re-

sponse considerations. The second most obvious differ-

ences between measurement and computation occur in the

crossover range between 2 and 4 kHz, where the first side-

lobes are reproduced with an error of about 3 dB. This effect

will be investigated further in the following subsection.

Finally we recognize that the positional model shows

some stronger deviations at very high frequencies for off-

Fig. 15. Vertical polars of line array, flanked case (—) compared to measurement (—), (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, (d) 4 kHz,
(e) 8 kHz, (f) 16 kHz.
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axis angles of about 80�. Especially the main sidelobe at 16

kHz is better reproduced by the isolated and flanked models

than by the positional model. This is due to the simplified

nature of the driving source in the BEM model. A more

representative source could be modeled that would replicate

the very high-frequency aliasing components if desired.

3.1.4 Elemental Deviation

So far we have assumed that the individual cabinets

used in the array have identical axial sensitivities. How-

ever, in practice there are some variations between indi-

vidual samples. Fig. 17(a) shows the deviations of the

frequency responses of the 12 different cabinets from the

mean of the set. Over the largest part of the frequency

range the cabinets fall within a variation of about �1 dB.

Only in the crossover range larger deviations of up to

3 dB occur. Fig. 17(b) displays a similar plot for the on-

axis phase responses. The variation is approximately � 6�

with peaks of up to 30� in the crossover range.

To better understand the effects of these errors, we

corrected the respective point sources to incorporate the

deviations and once more modeled the whole array.

Fig. 17(c) shows the resulting deviations between mea-

surement and prediction. Compared to Fig. 13(c) the be-

havior seems to be largely unaltered. But a closer look at

the crossover range reveals that particularly in this sensi-

tive region the error had decreased notably, on average by

about 0.5 dB. This is most obvious in Fig. 17(d), which

quantifies the improvement relative to the measurements

when using elemental corrections.

Fig. 16. Vertical polars of line array, positional case (—) compared to measurement (—), (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, (d) 4 kHz,
(e) 8 kHz, (f) 16 kHz.
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The same effect is shown in Fig. 18, where the polar

data from 2–4 kHz are presented for each model—

isolated, flanked, and positional. Compared to the original

polar response comparison the match seems to be much

better now, especially the small sidelobes are reproduced

clearly.

Of course we have to state that this finding is of not

much immediate practical value. In reality it is typically

not possible to measure the on-axis responses of all

concerned loudspeaker cabinets for prediction purposes.

This is especially true when an installation is still being

planned and the particular loudspeakers are not even

Fig. 17. (a) Elemental magnitude deviation of on-axis response at 1 m, relative to mean of set. (b) Elemental phase deviation of on-
axis response at 1 m, relative to mean of set. (c) Predicted sensitivity of line array relative to measurement using elemental complex
on-axis corrections, averaged over an opening angle of � 20�. (- - -) isolated, (—) flanked, (- 
 -) positional. (d) Relative improvement
of predicted sensitivity when using elemental complex on-axis corrections. Change of sensitivity shown in Fig. 13(c) compared to
Fig. 17(c). (- - -) isolated, (—) flanked, (- 
 -) positional.
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Fig. 18. Vertical polar plots of line array from top left to bottom right: 2 kHz, 2.5 kHz, 3.15 kHz, 4 kHz. (a) Isolated case (—)
compared to measurement (—) using elemental complex on-axis corrections. (b) Flanked case (—) compared to measurement (—)
using elemental complex on-axis corrections. (c) Positional case (—) compared to measurement (—) using elemental complex on-axis
corrections.
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available yet. Nevertheless one gains good insight into

the effect of sample-to-sample variations on the pre-

diction accuracy for a full array. Surprisingly it is not

as large as one would expect using simple methods of

error propagation. On the other hand, this quantifies the

potential accuracy gains in the simulation that can be

obtained by improvements with regard to production

tolerance.3

We add that so far we have not compared full balloon

data for different cabinet samples. However, it is likely

that the axial deviation is dominant compared to the var-

iations in the polar response.

3.2 Medium-Size Touring Line Array

3.2.1 Overview

Several comparisons were made using the SEQUENZA

10 line array from Kling & Freitag [25]. This was specifi-

cally selected to show that the prediction methods pre-

sented are applicable to larger cabinet sizes and beyond

the vertical domain. For mechanical reasons a small array

of 3 SEQUENZA 10N boxes was used. The front height

of a cabinet is about 0.30 m, the overall size of the

stacked array is approximately 0.91 m.

The array was modeled by a GLL and its performance

simulated with EASE SpeakerLab. In this model each

cabinet contains three different complex directivity point

sources, one each for the LF, LF/MF, and HF transducer.

The controller settings for the crossover and EQ were

measured separately and also applied in the GLL.

All of the balloon measurements were made at a dis-

tance of 8 m so that the far-field condition is still fulfilled.

Full-sphere complex data were acquired. For the single

box all three transducer measurements were performed

about the same point of rotation, namely, the geometric

center of the cabinet. In this respect we remark that the

use of phase data in the prediction automatically accounts

for the spatial offset of the transducers relative to the

point of rotation [14]. Also the single box measurements

were made without either top or bottom neighbor, which

is equivalent to the isolated case, as defined before. The

HF driver was measured with 2� resolution, the LF and

LF/MF drivers with 5�.
For the array measurements the system was rotated

about the geometric center of the center box. The back-

side of the array was not measured. The angular resolu-

tion of the array measurement along a meridian was 2�,
and the horizontal resolution along a parallel was 30�.

3.2.2 Polar Response

Because we have already presented a detailed in-

vestigation of the CDPS model in the vertical domain, our

intention here is mainly to show that the concept works

Fig. 18. Continued

3We might also imagine that, as part of the end-of-line test,

these data could be programmed into an intelligent active loud-

speaker. Optimization software could then recover this informa-

tion via the network to improve the accuracy of the result.
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similarly well for any other domain. For this purpose we

have chosen a set of cross-sectional polar plots at the

crossover frequency of the system. The array presented

here uses splay angles of 0� between adjacent elements

(Fig. 19). Other frequencies and configurations have been

examined as well but do not provide additional insights.

Fig. 20(a) and (b) show the horizontal and vertical polar

plots at 1250 Hz smoothed to a bandwidth of one-sixth

octave for better comparison. The radial scale is 40 dB, and

0� denotes the on-axis direction, 90� the upward direction.
Diagonal polar plots are presented in Fig. 20(c)–(f).

Four different diagonal planes are shown, namely, 30�/
210�, 60�/240�, 120�/300�, and 150�/330� rotated about

the system axis in clockwise direction, where the left is

0� when looking out of the box.

Obviously the correlation between measured and pre-

dicted performances is very good. Within an opening

angle of about 50� the deviations are typically within

�2 dB. Because the measurements were made for an

isolated cabinet, some of the improvements introduced

earlier and affecting off-axis prediction accuracy do not

apply here. Therefore the deviations in the polar responses

increase to about �3 dB for larger angles.

Overall we can state that the simulation matches the

measurement very well, and this includes planes other

than horizontal and vertical.

4 COMPARISON WITH ALTERNATIVE METHODS

After having presented a detailed investigation of the

CDPS model in the previous section we want to compare it

brieflywith other known approaches that are utilized tomodel

the radiation characteristics of continuous sound sources.

4.1 Elementary Sources Method

The Huygens principle [1] states that a propagating

wavefront can be reproduced by a set of discrete point

sources located on that wavefront [Eq. (7)]. Various

attempts have been made to employ Huygens’ principle

as a computational radiation model for curved or linear

sound sources; see, for example, [2], [3].

In its simplest form this concept is only applied in the

vertical domain. The radiation from the mouth of a horn

or waveguide is measured at a specific distance and

then modeled by a linear array of omnidirectional point

sources, which are located close to each other compared

to the wavelength and which represent a line of constant

phase. More advanced versions allow curved or arbi-

trarily shaped vertical arrays of directional sources. Be-

yond the purely vertical domain this Huygens model can

be extended to the horizontal domain as well by utiliz-

ing two-dimensional arrays of sources to represent two-

dimensional sound-radiating surfaces.

All of these approaches need to be combined with an

extensive set of actual measurement data. The more

degrees of freedom are available regarding source count,

directionality, and placement the more measurements are

needed to find optimal reproduction parameters. Due to

the complexity of the optimization process and its conver-

gence for the more advanced models, the calibration of

such a source array can be a tedious procedure.

It is an advantage of this approach that no phase data

have to be acquired directly, especially compared to the

CDPS model. It is also sometimes beneficial that a well-

defined Huygens model is able to reproduce the near field

of the radiating source where the CDPS model relies on

far-field elemental data.

On the other hand, the computational efforts for the

directivity prediction are much higher. Considering a

resolution requirement of a half-wavelength, a vertical

model of a 0.3 m line source has to include at least

18 sources to be valid up to 10 kHz. Compared to the

CDPS model of the cabinet, possibly using just a single

source, necessary calculation times are higher by an order

of magnitude. Extensions to the horizontal domain further

increase the computational demands.

Another disadvantage of the Huygens approach is its

lack of generality regarding off-axis radiation angles. Nat-

urally the wavefront principle cannot be applied when

planes of constant phase are difficult to measure or do

not exist. This is true especially for the sides and the

backside of a typical loudspeaker cabinet. In addition to

that, wavefront models that consist of only a vertical array

of sources need to approximate the pressure radiation for

the horizontal domain. This is often accomplished by

including a conventional directivity measurement of the

horizontal plane. However, it is questionable and remains

to be proven that for the diagonal planes there exist inter-

polation methods of satisfying accuracy.

4.2 Integral Methods

An extremely accurate solution to the problem of

determining the acoustic field exterior to an object with
Fig. 19. Straight array of three SEQUENZA 10N cabinets as
modeled in EASE SpeakerLab.
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radiating elements exists in the form of the boundary-

element method (BEM) [23]. Here a numerical approxi-

mation to the Helmholtz wave equation is determined,

which incorporates practically all of the acoustic phenom-

ena. Unfortunately an application of the method to a

complete array over the entire audible frequency range

presents a formidable computational obstacle. Largely for

this reason researchers have concentrated on applying

the methods to individual radiating components within a

single array element.

In an effort to reduce the scale of the problem some

attempts have been made to apply Rayleigh integral tech-

niques [4] to characterize a radiating component within

an array. The complex pressure or normal velocity is

deduced over a small flat surface in front of the compo-

nent. Once known, the exterior field can be determined in

front of the plane. The idea is then to tessellate these

surfaces to simulate an array. Leaving aside the inability

of the approach to model the rearward radiation there

remains the problem of acquiring the surface data. One

method is to make some polar measurements of the device

and use them as a target in an optimization loop that

attempts to determine the surface data [5]. Direct mea-

surement of the data may also be possible [6]. Alterna-

tively, for horns one could view the problem as an interior

BEM solution, with appropriate boundary conditions on

the imagined surface, thus obtaining surface data based on

the real horn geometry [26].

Fig. 20. Polar plots of array at 1250 Hz; measured data (þþþ) and predicted data (—). (a) Horizontal. (b) Vertical. (c) Diagonal (30�/
210�). (d) Diagonal (60�/240�). (e) Diagonal (120�/300�). (f) Diagonal (150�/330�).
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Assuming accurate surface data for one component are

available, there still remains the problem of the influence of

the rest of the array. To illustrate this, a midfrequency horn in

a medium-sized touring line array has been modeled using

BEM. Fig. 21(a) shows the 400-Hz pressure magnitude on

an imagined surface just behind the grille. The surface

extends over a six-box array with the active box at second

position from the top. Fig. 21(b) shows the effect of simply

Fig. 21. Modeled pressure magnitude at 400-Hz frequency. (a) Imagined surface in front of isolated loudspeaker. (b) Imagined surface
in front of an array of six loudspeakers with only the second box being active.

Fig. 20. Continued
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placing inactive elements above and below the active one.

Obviously one will obtain quite different results for the exte-

rior fields for these two configurations at this frequency.

The integral approaches can be useful for designing com-

ponents or modeling isolated loudspeakers. However, when

applied to wide-band array predictions they have similar

limitations as the isolated case of the CDPS. Many of the

concerns these methods address, such as geometric error

mechanisms, are solved by the use of complex data in the

CDPS model. So it seems that the considerable measure-

ment or analysis burden to create such models is not

warranted. Full BEM of the entire array at low and mid

frequencies is feasible. A combination of a CDPS model op-

erating in the region of geometrical acoustics [27] and BEM

operating below that frequency would seem almost ideal.

5 CONCLUSIONS

With this work we have introduced a refined computa-

tional model based on complex-directivity point sources

to predict the performance of extended loudspeaker arrays

in a simple, consistent, and closed form. Although the use

of phase data and directional point sources for prediction

purposes in itself is not new, for the first time we show its

broad applicability, quantify its accuracy, and present

implementations based on several platforms.

We first introduced the CDPS model as a simple means

to simulate loudspeakers and loudspeaker arrays. Based

on that, we have shown that the sound radiation character-

istics of any continuous line source can be reproduced by

this model within given error limits. We have also derived

principal conditions for the description by discretized

complex directivity data.

Subsequently we made detailed comparisons between

measured and predicted results for two different arrays. It

was shown that taking into account the effect of neighbor-

ing cabinets on the radiation behavior of a particular line

array element can significantly improve the overall pre-

diction accuracy, particularly the absolute sensitivity. We

have also seen that production variations of elements of

the line array which are assumed to be identical have a

limited but noticeable effect on the error of the simulation

results. Finally we showed that the CDPS model is gener-

ally valid in three dimensions without restriction.

We concluded with some remarks about alternative

approaches in the last section of this work. There exist

several other computational models for the sound radia-

tion of a loudspeaker of accuracy comparable to the

CDPS model. However, they are typically more difficult

to implement, computationally expensive, and limited in

their general applicability.

With direct realizations in EASE SpeakerLab based

on the GLL framework, in DISPLAY v1.6 and v2.0, as well

as in MATLAB we have demonstrated the tech-

nical simplicity and accuracy of the CDPS model.

Complemented by measurements of sufficient accuracy or

a precise BEM- or FEM-based model for the cabinet itself

this approach provides a high degree of confidence for the

prediction of sound radiation by a loudspeaker array.

Accordingly, the authors would like to emphasize

that given the performance and memory of modern PC

platforms there should no longer be any major issues

hindering the implementation and utilization of an accu-

rate prediction model for complex loudspeaker systems

based on fairly simple input data.
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