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In recent years, machine learning has been widely adopted to automate the audio mixing
process. Automatic mixing systems have been applied to various audio effects such as gain-
adjustment, equalization, and reverberation. These systems can be controlled through visual
interfaces, audio examples being provided, usage of knobs, and semantic descriptors. Using
semantic descriptors or textual information to control these systems is an effective way for
artists to communicate their creative goals. In this paper, the novel idea of using word embed-
dings to represent semantic descriptors is explored. Word embeddings are generally obtained
by training neural networks on large corpora of written text. These embeddings serve as the
input layer of the neural network to create a translation from words to equalizer (EQ) settings.
Using this technique, the machine learning model can also generate EQ settings for semantic
descriptors that it has not seen before. The EQ settings of humans are compared with the
predictions of the neural network to evaluate the quality of predictions. The results showed
that the embedding layer enables the neural network to understand semantic descriptors. It was
observed that the models with embedding layers perform better than those without embedding

layers but still not as well as human labels.

0 INTRODUCTION

The process of audio production involves multiple tasks
such as balancing sound levels and applying audio effects.
An audio effect can be defined as a function that transforms
sound based on a set of controlled parameters [1]. Audio
production is needed in various domains such as making
albums, films, and theater works, to name a few. It is gener-
ally carried out by a mixing engineer who understands the
goals of their client. The mixing engineer blends multiple
tracks together by modifying acoustic properties such as
dynamics and timbre [2]. A vast body of research has been
exploring how this process can be automated through the
use of intelligent tools [3—6]. Traditional Artificial Intelli-
gence (AI) approaches such as expert systems have been
adopted to create autonomous mixing tools [3]. These sys-
tems are knowledge-engineered and adopt a set of rules
for mixing depending on the scenario. However, recent re-
search has grown toward using Machine Learning and Deep
Learning for automatic mixing. On one hand, some stud-
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ies have focused on specific areas, such as gain balancing
[7] and reverberation [8]. On the other hand, some have
explored building autonomous systems in which the entire
mixing process is carried out without human intervention
[2,9].

An equalizer (EQ) is an audio effect created by cascading
multiple filters in series [10]. Timbral adjectives often have
a correlation with the parameter setting for the equalizer.
Some examples include add air, make it warmer, and make
it less muddy [11]. Kulka [12] associated adjectives such
as warmth, honk, crunch, and sibilance with frequencies of
125, 500, 2,000, and 8,000 Hz, respectively. For example,
according to the Kulka rule, if the mix sounds honky, cut
the region around 500 Hz.

When clients such as instrumentalists and musical di-
rectors work with mixing engineers, they often use se-
mantic descriptors to describe their goals. For example,
“make the violin sound warmer” [13]. It is the role of the
mixing engineer to understand these descriptors. Popular
semantic descriptors such as warm and bright are easily
understood by the mixing engineer [14]. To expand the
vocabulary of such descriptors, studies have also tried to
create a thesaurus with synonyms and antonyms. For ex-
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ample, significant synonyms of boom are boxy, dull, and
fat and significant antonyms of boom are air, bright, and
crisp [11]. However, the problem arises when individuals
without training in audio production describe their creative
goals [15]. They may have ideas that cannot be directly
translated into a studio engineer’s vocabulary.

To address this issue of non-technical descriptors,
Cartwright and Pardo [13] presented a dataset called So-
cialEQ, which is a web-based project that adopts crowd-
sourcing to learn a vocabulary of audio descriptors. Be-
cause it is crowdsourced, the study focuses on aggregating
a vocabulary to enable non-technical individuals to describe
their sonic goals. Crowdsourcing was also adopted to build
the datasets for other effects like reverberation [16] and
dynamic range compression [15].

There is a growing interest in adopting natural language
processing (NLP) methodologies to develop semantically
controlled audio effects [17-19]. Stables et al. [20] pre-
sented a system called Semantic Audio Feature Extraction
(SAFE), which focused on extracting semantic descriptions
for equalization from a digital audio workstation (DAW).
Stasis et al. [21] investigated the idea of mapping the de-
scriptors to a reduced dimensionality space, to enable users
to interact with the system in a more intuitive way. Chour-
dakis et al. [22] explored tagging and retrieval of room
impulse responses for reverberation. They adopted word
embeddings to assign impulse responses to tags that match
their short descriptions.

This paper explores the novel idea of adopting word em-
beddings to automatically predict EQ settings. A methodol-
ogy is presented to translate words from a semantic vector
space to a vector space representing the parameters of an
equalizer. Word embeddings are representations of words
that capture lexical semantics in language [23]. An em-
bedding layer is often used as the first layer in a neural
network that performs NLP tasks, such as machine transla-
tion, caption generation, and automatic speech recognition
[24]. Although word embeddings are commonly used to un-
derstand natural language, this paper investigates whether
they would be of any benefit to descriptors for EQ settings.
This approach is adopted to translate words to predict val-
ues of a parametric equalizer. This way, the neural network
has the ability to understand non-technical words and even
descriptors that it has not seen before. This finding is sig-
nificant because artists without training in audio production
can express their creative goals directly to the Al-powered
mixing engine. To the authors’ knowledge, this is the first
study that investigates how EQ settings can be predicted
for unseen semantic descriptors. It is demonstrated that the
neural network is capable of learning a direct translation
from the text domain to the EQ domain.

1 METHODOLOGY

1.1 Dataset

The SocialEQ dataset [13], which crowdsources seman-
tic descriptors for EQ settings, is adopted. In the raw format,
each sample in the dataset contains a semantic descriptor,
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language of the descriptor, audio identifier, a consistency
rating, and 40 values for EQ parameters. During the data
collection, each participant was asked to enter a word in
their preferred language. For example, warm in English,
claro in Spanish, or grave in Italian. Subsequently, they
picked a sound file, which was modified by the EQ plugin.
There were three sound files—electric guitar, piano, and
drums. Each sound file had a unique audio identifier.

After selecting a descriptive term and audio file, the par-
ticipant was presented with 40 different modifications of
the sound file made by different EQ settings. If the user se-
lected warm, they were asked to rate how warm that sound
is. Out of the 40 modifications, there are 15 repetitions to
test for consistency. Consistency score was calculated us-
ing Pearson correlation between the ratings of the test and
repeated examples. The system processes the ratings of the
user and develops a relative boost/cut for 40 different fre-
quency bands. Refer to Cartwright and Pardo [13] for more
details on the dataset.

The dataset has 1,595 samples in it. For simplicity, only
descriptors in English were considered. The number of ex-
amples in English was 918. It is important to note that the
dataset contained examples with different EQ parameter
settings for the same word. Thus, the number of unique
descriptors in English was 388.

1.2 Train-Test Split

An important hypothesis the authors wanted to test in
this paper is that a word embedding layer helps a model
predict EQ parameter settings for semantic descriptors it
has not seen before. Therefore, words in the test set should
not appear in the training set. A four-fold cross-validation
setup [25] was adopted, and the strategy is explained below.

A list of semantic descriptors that are common in the au-
dio mixing literature was aggregated. These were labeled
high-quality (HQ) words. In order to avoid bias and objec-
tively choose these words, those that were already listed in
Table 4.8 in [11] were selected. Additionally, semantic de-
scriptors that fell under the hierarchical ontology presented
by Pearce et al. [26] were included. The list of HQ words
is presented in bold in Table 1. There are 32 HQ words
present in the SocialEQ dataset.

A list of words that were highly rated (HR) was also
aggregated. HR words need not be semantically meaningful
but do need to have a high consistency score in the dataset.
Words that have a consistency score greater than 0.7 were
selected as HR words. Because these words have a high
consistency score, the user strongly associated the semantic
word with a particular EQ setting. Words in Table 1 that are
not formatted as bold text are HR words. Totally, 86 HR
words were present in the SocialEQ dataset.

Each test fold contained nine HQ and 22 HR words. It was
ensured that every HQ and HR word was tested at least once.
In the last test fold, there may be a few repetitions of words
from the first test fold. There was no overlap between the
training and test sets. The test set only contained words that
were not present in the training set. Note that the network
for each fold is trained as a separate experiment. In other
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Table 1. Four cross-validation folds from the dataset. The test words from each fold are presented in the table. For each fold, the
training set consists of words that are not in the test set.

Fold 1 Fold 2

Fold 3 Fold 4

smooth, muffled, crisp,
punch, clean, brittle, muddy,
soothing, clear, brassy, caring,
mellow, throbbing, cooing,
fluffy, good, excited,
squeaking, punchy, funky,
whispered, disgusting,
beautiful, reserved, serene,
thumpy, pleasurable,
whispering, gentle, energetic,
peace

crunchy, woody, flat,
metallic, dull, tinny, cold,
booming, deep, energizing,
heart-warming, edgy, heavy,
edge, strong, enchanting,
cheerful, plodding, quiet,
radiant, biting, brass, pleasing,
light, taco, gruff, exciting, love,
heat, techno, solemn

sweet, warm, airy, full, boxy,
bright, boom, fat, shrill,
calm, velvety, hard, rich, noisy,
down, rumble, sloppy,
relaxing, peaceful, romantic,
low, hot, thunderous, frigid,
happy, poor, cool, tense,
jagged, forceful, aggressive

sharp, big, dark, hollow,
harsh, smooth, muffled,
crisp, punch, mournful,
clarity, genius, bold, twangy,
soft, splash, slow, wistful,
brash, fancy, cute, rousing,
loud, breezy, large,
passionate, baseball, huge,
icy, brassy, caring

words, the network is totally trained four times and tested
four times on different folds, and the average performance
is reported.

As mentioned earlier, each word can have multiple EQ
settings. Each setting is a separate example and can have
different consistency scores. In the test set, only examples
that had a consistency score greater than 0.7 were included.
In the training set, no words were excluded based on the
consistency score.

1.3 Word Embeddings

A vocabulary consists of all the possible words that the
neural network can understand. Generally, a word is con-
verted into a one-hot encoded vector before passing into the
neural network. For instance, in the SocialEQ dataset, there
are 388 unique words, which means that the size of the vo-
cabulary is 388. Therefore, the dimensions of the one-hot
encoded vector are 1 x 388. Each position within the vector
is assigned to a unique word. Thus, the respective position
of the word is labeled as 1, and the remaining elements
are 0. However, it is important to note that the Euclidean
distance between any pair of words is equal. Because each
word is equidistant from each other, the neural network is
not capable of handling words that are not present in the
training set. For example, consider the semantic descriptor
bright, and assume that it is present in the training set. Also
assume that clear and boom are words in the test set. Ac-
cording to Stasis [11], clear is a synonym of bright, and
boom is an antonym of bright. Thus, similar EQ settings
are expected for clear and bright, but considerably different
EQ settings are expected for boom and bright. However, the
neural network cannot perceive this understanding unless it
has seen all three words because each word is equidistant
from each other. Furthermore, this issue becomes exagger-
ated if a non-technical user is utilizing a semantic descriptor
that is not common in the audio mixing literature.

A word-embedding layer converts a one-hot encoded rep-
resentation into a vector space of reduced dimensionality.
Large vocabularies with millions of words can be reduced to
a300-dimensional vector representation [27]. The distances
between words in the embedding space are governed by
some form of semantic correlation. Examples include syn-
onyms or two words frequently occurring together. There
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are different algorithms to train word-embedding models.
Some of them include Word2Vec [28], GloVe [27], Con-
ceptNet [29], and Dict2Vec [30]. Each of these algorithms
presents unique methods to train on large corpora of text,
such as Wikipedia. Effectively, they try to learn semantic
relationships between words and represent them through an
embedding vector.

This study investigated four different embedding
models—GloVe-6B, GloVe-840B, Tok2 Vec, and Dict2Vec.
GloVe is an unsupervised learning algorithm developed
to obtain vector representations for words [27]. GloVe-6B
refers to the model that was trained on Wikipedia 2014 and
Gigaword 5. It includes 6 billion tokens and a vocabulary
size of 400,000. Moreover, GloVe-840B uses 840 billion
tokens and a vocabulary size of 2.2 million. It trains on the
World Wide Web using Common Crawl, which is a larger
corpus of text. Tok2Vec is a word-embedding model pro-
vided by a company called spaCy [31]. The entire details
regarding its implementation were not found, but the model
is publicly available and free to use.

It is important to note that word-embeddings are used
for NLP tasks, which are designed to accept sentences.
In this application, the authors are considering only one
word, which is the semantic descriptor. Because GloVe and
Tok2Vec also focus on the ordering of words in sentences,
the authors thought it was a good idea to consider another
embedding model called Dict2Vec [30]. Dict2Vec is an em-
bedding model that uses lexical dictionaries. It builds new
word pairs from dictionary entries so that semantically-
related words are closer to each other in the embedding
space [30]. Similar to GloVe-6B, it was trained on the
Wikipedia corpus.

1.4 Machine Learning Architecture
1.4.1 Word-Embedding Layer

Four different pre-trained word-embedding models were
evaluated in the study—GloVe-6B, GloVe-840B, Tok2 Vec,
and Dict2Vec. All the models represent words with 300-
dimensional semantic vectors. This is convenient because
the same neural network architecture can be adopted to
compare different embeddings. Initially, a word is con-
verted into a one-hot encoded representation. Subsequently,
an embedding matrix converts this one-hot encoded repre-
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Table 2. The neural network architecture.

Layer type Units Activation Output shape
Embedding i s 300

Dense 300 ReLu 300

Dense 200 ReLu 200

Dense 100 ReLu 100

Dense 80 ReLu 80

Dense 60 ReLu 60

Dense 40 Sigmoid 40

ReLu, rectified linear activation unit.

sentation into a 300-dimensional semantic vector. Then,
this vector is connected to hidden layers in the network.
Note that the weights of the embedding matrix are frozen
and the layer is not trainable. The authors did not consider
setting this to trainable because of the limited data they
have.

1.4.2 Hidden Layers

The neural network aims to translate a representation of
word embeddings to a prediction of equalizer parameters.
Therefore, this network needs to be deep enough to learn the
translation between two domains. Deeper networks apply
the non-linear activation more times on the input and there-
fore have the advantage of learning more complex trans-
lations. However, it is important to note that the dataset is
relatively small for this task.

All the layers in the neural network were fully connected
layers. Table 2 shows an overview of the architecture. After
the embedding layer, there was a series of fully connected
layers. The number of hidden units in these layers were
300, 200, 100, 80, and 60, respectively. Finally, it was con-
nected to an output layer with 40 units. Excluding the final
layer, all the hidden layers were fitted with rectified linear
unit activations and a dropout of 0.1. The output layer is
explained in Sec. 1.4.4. The code and trained models asso-
ciated with this study can be found in this GitHub repository
(https://github.com/satvik-venkatesh/word-eq).

1.4.3 Normalization

Traditional min-max normalization by calculating the
maximum and minimum in the training set was not appro-
priate for this dataset. This is because if there exist any out-
liers among the values in the test set, specific features may
get magnified or diminished. Furthermore, because values
for 40 EQ bands are being predicted, this issue becomes
more crucial. Therefore, the minimum and maximum value
for each EQ parameter were fixed to —4 and +4 dB, respec-
tively. In other words, the highest cut/boost within each EQ
band was 4 dB. The values were linearly normalized to the
range of 0 to 1. Hence, -4 dB would correspond to 0, and
+4 dB would correspond to 1 in the output layer.

1.4.4 Output Layer and Loss Function

The output layer of the network contained 40 neurons,
with each of them predicting a value for one EQ band.
Because the data were normalized within the range of 0
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Table 3. The error calculated across four folds. The smallest
error is indicated in bold.

Word embedding Error

Tok2Vec 0.760 £ 0.055
Glove-840 0.770 £ 0.032
Dict2Vec 0.792 £ 0.058
Glove-6B 0.798 £ 0.046
No Embedding 0.836 £ 0.016

to 1, sigmoid activation functions were used for the output
neurons. The loss function was the mean absolute error,
which is commonly used by studies for regression tasks.
All EQ bands were given equal importance when averaging
the error for the loss function. In future work, it would
be interesting to weigh the EQ bands based on perceptual
frequency band weights. However, that is beyond the scope
of this study.

The network was trained using stochastic gradient de-
scent with an initial learning rate of 0.1. The learning rate
was scaled by 0.96 after every 10,000 weight updates.

2 RESULTS

2.1 Error

Table 3 shows the mean absolute error for different em-
bedding models calculated across four test folds. As can be
seen, Tok2Vec obtains the lowest error of 0.76, followed
by GloVe-840 with an error of 0.77. GloVe-840 obtains an
error lower than GloVe-6B, which conveys that it benefited
from training on a larger corpus. Dict2Vec and GloVe-6B
were trained on similar dataset sizes, and the former ob-
tained a better error. This suggests that the performance of
Dict2Vec can be improved with training on a larger corpus
of text.

The No Embedding model in Table 3 means that no word-
embedding layer was used in the neural network. This can
be considered to be the baseline system. Because this is
the first study that investigates a translation from unseen
semantic descriptors to EQ settings, there are no state-of-
the-art approaches for comparison. The input of the network
was a direct one-hot encoded representation. All the neural
networks with word embeddings performed better than the
model without word embeddings. However, the difference
was not huge. The best model was Tok2Vec with an error
of 0.76 vs. No Embedding with an error of 0.836. This is
possibly due to two reasons. Firstly, error may not be the
best metric for this task. For example, the semantic word
warm may have a boost of 1.2 dB at 260 Hz. But the neural
network may predict a boost at the adjacent EQ band, such
as 317 Hz. Although the the error in this case is high, the
EQ effect applied to the audio may still be semantically
meaningful. Secondly, the test set contains many semantic
descriptors that occur only once. These examples may be
highly subjective to one individual, despite having a high
consistency score. Therefore, in the next subsection, the top
two performing models are evaluated using Partial Curve
Mapping (PCM) [32], which is a method to quantify the
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similarity between two curves. For instance, this technique
is generally adopted to analyze similarities between hys-
teresis curves pertaining to a magnetic field. Although this
technique may not be ideal for this task, it would give a bet-
ter understanding of this model’s performance compared to
mean absolute error.

2.2 PCM

In this section, the models are evaluated using PCM.
PCM was implemented using this Python package [33].
The models are also compared to human labels. As men-
tioned earlier, each semantic descriptor had multiple EQ
settings in the dataset. To calculate the error in human la-
bels, the mean of the different EQ settings was considered
the ground truth. However, words that occur only once in
the dataset would not have an error associated with it. These
words would artificially reduce the average error. Hence,
only words that occur at least twice in the dataset were
included. Fig. 2 shows the distances for different models.
An ideal algorithm would obtain a distance of zero. Hu-
man labels obtain the smallest distance of 2.9, which is an
expected observation. GloVe and Tok2Vec obtain similar
distances with the former performing slightly better. The
distances were 9.3 and 10.5, respectively. Note that for this
experiment, only words that occur at least twice were con-
sidered, which is different from results presented in Sec. 2.1.
The mean distance of the model with no embeddings was
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35.4, which was considerably higher. Additionally, there
was a much larger standard deviation for this model, which
suggests that it was randomly guessing.

2.3 Plots of EQ Parameters

In this section, an error analysis of predictions made by
the machine learning models was performed. Individual
test words are looked at to investigate whether the neural
network is actually learning semantic meanings. HQ words
are predominantly looked at because they are common in
the audio mixing literature and would be more intuitive to
evaluate. In Figs. 3 and 4, the EQ settings of human labels
are plotted alongside the predictions of Tok2Vec, Glove-
840B, and No Embedding. Because the literature does not
comprise an “ideal” metric for the task of predicting EQ
parameters, graphs were plotted, and the predictions of
the algorithms were actually visualized. Fig. 3 plots the
graphs for words selected from test folds 1 and 2. Fig. 4
plots the graphs for words selected from test folds 3 and
4. Note that for each word in the test folds, the neural
network has not encountered the word in the training set.
The human label chosen for each semantic word in the
plots was the EQ setting with the highest consistency score
in the dataset.

In Fig. 3, human labels for muffled had boosts at 20
Hz and 3.5 kHz. For Tok2Vec and GloVe, slight boosts
were seen in the mid-range and high-range, respectively,
which may convey that the neural networks did not inter-
pret this word correctly. The predictions made by Tok2Vec
and GloVe were also observed to be considerably differ-
ent from each other. This can be due to two reasons—(1)
Tok2Vec and GloVe are different algorithms and therefore
learn different semantic meanings from text, and (2) there
may be a higher degree of randomness in their predictions
because the embeddings are trained only on natural text
from the Word Wide Web, which is different from EQ de-
scriptors. Hence, the neural network would require more
training examples containing EQ descriptors. The network
with No Embedding was basically a flat curve for all the
words in the first fold.

For crisp, interestingly, the predictions of Tok2Vec and
GloVe did follow a similar pattern as the human labels. In
the human labels, boosts were seen at 2,100 and 9,000 Hz.
For GloVe and Tok2Vec, a gradual boost was seen at
3,000 Hz, which lifts the high-range of the frequency spec-
trum. Some semantic synonyms of crisp present in the train-
ing set for this respective fold include bright, harsh, hollow,
and sharp. This means that the word embedding has delin-
eated a relationship between the semantic word and EQ
predictions. Again, as mentioned earlier, a meaningful pat-
tern in the neural network with No Embedding was not
observed because the curves were flat.

Muddy had a gradual boost from 200 to 380 Hz in the
human labels. Tok2Vec follows a very similar pattern in
its prediction by boosting the lows and cutting the highs.
GloVe’s prediction has slightly boosted lows and highs,
which is not convincing for the semantic word muddy.
Some semantic synonyms in the training set include boom,
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Fig. 3. Plots of equalizer (EQ) parameters for words in test folds 1 and 2. Note that each word in the test set does not occur in the training
set. The first two rows occur in fold 1, and the last two rows occur in fold 2. The human label plotted for a semantic word was the EQ

settings with the highest consistency score in the dataset.

muddled, dark, dull, and fat. The next test word, brittle,
was well-understood by both Tok2Vec and GloVe. There
was considerable overlap with the human labels. The syn-
onyms for brittle in the training set would be similar to
those listed for crisp. Punchy was understood by GloVe but
not by Tok2Vec. Gentle was not understood by either em-
bedding model. (Please refer to Table 1 for more semantic
synonyms. If fold 1 is selected as the test set, folds 2, 3, and
4 are included in the training set.)

Crunchy had boosts in the low-frequency and high-
frequency ranges in the human labels. A boost for GloVe
and Tok2Vec is observed in the high range. The No Em-
bedding model has a boost in the low range. However, if
you observe, it has made the same prediction for all the
test words in the second fold. GloVe and Tok2Vec and
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correctly understood the semantic descriptor metallic and
have significant overlap with human labels. For finny, hu-
man labels have boosts at 1,300 and 9,000 Hz, whereas
the neural networks with embeddings have a gradual boost
around 3,000 Hz. It is not certain whether these predictions
would have a tinny effect. For test words enchanting and
deep, a noticeable overlap with human labels was observed.
However, for cold, it seems as though GloVe and Tok2Vec
predicted the antonym.

In test fold 3, sweet was not understood by the networks
at all. For warm, Tok2Vec has a noticeable overlap with the
human labels because both have a boost of approximately 2
dB in the low-frequency range. Airy was partially convinc-
ing because GloVe recognized a boost at 9 kHz. Although
the networks have boosted the lows for full, it seems like

J. Audio Eng. Soc., Vol. 70, No. 9, 2022 September



PAPERS

WORD EMBEDDINGS IN AUDIO MIXING

Sweet Warm Airy
2 A 2 1 24
g | g |2 3 (oo
© o ©
(U] (U] (U]
-2 -2 1 -2
20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Full Boxy Bright
2 A 2 1 21
o o 74 o
z z z
c 01 = 0+ - 04
‘© ‘© ‘©
(U] (U] (U]
-2 -2 1 -2
20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Sharp Dark Hollow
2 A 2 A 2
g 8 3 2N
c 01 - 0+ — 01
‘© ‘© ‘©
(U] (U] (U]
-2 -2 1 -2
20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k 20 380 1.3k 3.5k 9k 22k
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Breezy Harsh Smooth
2 1 2 1 21
o o o
z ° z
c 0 c 0 c 0
o o ©
(U] (U] (U]
-2 -2 -2

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

—— Human
Tok2Vec

— GloVe

—— No embedding

Fig. 4. Plots of equalizer (EQ) parameters for words in test folds 3 and 4. The first two rows occur in fold 3, and the last two rows occur

in fold 4.

a random guess because the prediction significantly over-
laps with the one made by No Embedding. The predictions
made by the networks for boxy were not convincing. Bright
seemed plausible with Tok2Vec and GloVe boosting the
high-frequency range.

In test fold 4, reasonable overlap for sharp, dark, hol-
low, and harsh was seen. A reasonable pattern for breezy
and smooth was not observed. Interestingly, the network
with No Embedding predicted the EQ settings for harsh
correctly. This is a chance occurrence because it predicted
a standard template of settings for all the other words.

In Fig. 5, the predictions on non-technical words are an-
alyzed. These non-technical words are the same as the HR
words explained in Sec. 0. Although these words may have
a high consistency score in the SocialFX dataset, they may
be highly subjective to the user. However, the predictions
of GloVe and Tok2Vec were compared to the human labels.
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There was considerable overlap for mellow, enchanting,
rich, and romantic. For mournful and calm, there were simi-
lar patterns between the predictions of the word-embedding
models and human labels. However, for heat and brass, the
word-embedding models did not predict a relevant pattern.
Although the training set contained semantically similar
words like warm and brassy, the embeddings did not per-
ceive these similarities. This conveys that the algorithms
to learn word embeddings can be further optimized for EQ
mixing.

3 DISCUSSION

In the previous section, a word-embedding layer was
shown to be helpful for automatic mixing. The error of
models in Sec. 2.1 was analyzed. All the models with an
embedding layer obtained lower errors than the one without
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Fig. 5. Plots of equalizer (EQ) parameters for highly rated (HR) words as explained in Sec. 1.2. These are non-technical words that may

be highly subjective to a user.

an embedding layer. The performance of GloVe-840B and
Tok2Vec was further analyzed by using PCM. The mean
distances obtained by human labels, Tok2Vec, GloVe, and
No Embedding were 2.9, 10.5, 9.3, and 35.4, respectively.
This objectively demonstrates that the embedding models
perform better than models without an embedding layer but
not as good as human labels.

In Sec. 2.3, an error analysis of predictions made by
GloVe and Tok2Vec was conducted. It was observed that the
machine learning models were able to understand semantic
descriptors that they had not encountered before. This is a
promising step toward understanding semantic descriptors
from non-technical users. It is important to note the word-
embedding layers used in the networks were trained on
corpora of written text. This concludes that there exists
some common ground for semantic relationships between
words in written text and for those adopted in EQ mixing.
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Considering the fact that such a small training dataset
has been adopted, this performance is reasonable. The So-
cialFX dataset comprises only 388 unique English words.
Additionally, many of the HQ and HR words were used for
testing in each fold. Because this study has demonstrated
that word embeddings are helpful for automatic EQ mixing,
the authors hope to encourage researchers to build larger
datasets with semantic descriptors. In the literature, another
dataset called SAFE [20] focused on extracting semantic
descriptions for equalization from a DAW. The dataset was
not included within this study for two reasons. Firstly, be-
cause these are extracted directly from the DAW without
post-processing, some labels can be noisy. Although the
dataset contains many examples with meaningful descrip-
tors, some words are randomly typed letters such as “xy,”
which have no semantic meaning. Perhaps this noise may
not matter when training the network with large-scale data.
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The second reason is that both datasets use different EQ
plugins. The SocialFX dataset uses a 40-band EQ, whereas
the SAFE dataset uses a five-band EQ. It is not certain
whether additional noise would be induced in mapping one
EQ domain to the other.

In this study, the performance of the machine learning
model was analyzed using objective metrics. However, it
is important to perform listening tests with human par-
ticipants to obtain subjective evaluations of the system.
Whether users are satisfied with the way the machine learn-
ing model understands their semantic descriptors needs to
be investigated. After aggregating a larger dataset for this
task, this could be a potential future pathway.

4 CONCLUSION

In this paper, the feasibility of adopting word embed-
dings for automatic EQ mixing was demonstrated. It was
shown that the word-embedding layer is capable of pro-
viding relationships between semantic descriptors, which
assists in predicting EQ parameters. Using this technique,
the machine learning model can predict EQ settings for
words it has not seen before. This is a step toward bridging
the gap between artists explaining their creative goals and
mixing engineers understanding them.

In this study, EQ parameters were looked at as a separate
entity. This may not be ideal in some scenarios. For exam-
ple, the EQ settings for “make the vocals sound brighter”
maybe different from “make the drums sound brighter.”
Moreover, the number of EQ bands predicted was 40. This
number is large for a network that performs regression.
Future research could explore how the neural network ar-
chitecture can be optimized and regularized better. Further-
more, it may be interesting to augment the size of training
sets by adopting well-known synonyms and antonyms in
the mixing engineer’s vocabulary.

For some words, Tok2Vec captured relationships, but
GloVe did not, and vice versa. For example, GloVe captured
the meaning of punchy as shown in Fig. 3, and Tok2Vec cap-
tured the meaning of warm as shown in Fig. 4. This may be
simply because there is limited data in the training set. Oth-
erwise, different embedding models may capture different
aspects of semantic relationships. Therefore, an ensemble
of different embedding models will improve performance
in this case. Furthermore, in this study, non-English words
were discarded for simplicity. Word-embedding models
such as ConceptNet [29] use a knowledge graph to connect
words from different languages. This may be an interesting
avenue to explore.
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