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This paper is concerned with sound localization experiments in which subjects report the
position of an active sound source by turning toward it. A statistical framework for the analysis
of the data from this type of experiment is presented together with a case study from a large-
scale listening experiment. The statistical framework is based on a model that is robust to
the presence of front/back confusions and random errors. Closed-form natural estimators are
derived, and one-sample and two-sample statistical tests are presented. The framework is used
to analyze the data of an auralized experiment undertaken by nearly nine hundred subjects.
Results show that responses had a rightward bias and that speech was harder to localize than
percussion sounds, which are results consistent with the literature. Results also show that it
was harder to localize sound in a simulated room with high ceiling, despite having a higher
direct-to-reverberant ratio than other simulated rooms.

0 INTRODUCTION

The phenomena governing human sound localization
have been the subject of intense study since the turn of the
twentieth century [1]. A large variety of characteristics have
been studied, ranging from the just-noticeable-differences
in localization accuracy, adaptation, and learning effects,
to the influence of the source’s spectral content and room
reflections [1-3]. Recent experiments also studied the con-
tribution of high frequency content in the presence of a
noise masker [4], the degradation of localization accuracy
with outer ears occlusions [5] and bilateral hearing aids [6],
and the localization of multiple coherent sound sources [7].

Subjects are typically asked to indicate the direction of
the perceived sound source by (a) reporting the closest loud-
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speaker, fixed acoustic pointer or label [7, 4, 2]; (b) steer-
ing a movable pointer [8]; (c) reporting the direction on
a graphical user interface (GUI) or on paper [6]; or (d)
turning their face toward the perceived sound source after
the stimulus has been presented [9, 5]. This paper is con-
cerned with experiments where subjects report the position
of the perceived sound source by turning toward it while
the stimulus is being presented. This methodology makes it
possible to study the dynamics of how subjects rotate them-
selves to find a sound source, to study the mechanisms that
enable them to resolve front/back confusions, and to study
the reported direction of the perceived sound source. This
paper focuses on the latter of the three.

Metrics of interest for the the perceived sound source
include the mean direction and concentration of responses
and how many subjects experience a front/back confusion
or make a random error. Since the subjects turn toward an
active sound source and give their answer once they believe
the sound source is in front of them, the methodology con-
sidered in this paper is limited to the study of localization
in frontal directions. This restriction allows subjects to fine
tune their initial decisions and is particularly useful in cases
where the stimuli are hard to localize (e.g., in echolocation
tasks or when the auditory system is interfered with) and
in experiments involving untrained subjects. The task of
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turning toward a sound source is, in fact, easy to under-
stand and is a natural and intuitive reaction to sound.

The main contribution of this paper is a statistical frame-
work designed to analyze the data obtained with this exper-
imental methodology. The proposed statistical framework
is robust to the presence of front/back confusions and ran-
dom errors. The framework is then used to analyze the data
of a large-scale auralized experiment. The objective of this
experiment was to study localization performance in the
horizontal plane in an informal setting and with little train-
ing, which are conditions of interest because they are similar
to those typically encountered in consumer applications of
binaural audio. An earlier version of the experiment de-
scription with partial results was presented at the 60th AES
International Conference [10].

This paper is organized as follows. Sec. 1 outlines the
experimental context considered here. Sec. 2 reviews con-
cepts of circular statistics that form the basis of the proposed
statistical framework, which is presented in Sec. 3. Sec. 4
describes in detail the design of the large-scale auralized
experiment and presents an analysis of the data based on
the proposed statistical framework. Sec. 5 concludes the

paper.

1 EXPERIMENTAL CONTEXT

The experimental context considered in this paper has
the following characteristics. The subject is presented with
a sound stimulus and is asked to indicate the direction of
the perceived sound source by turning themselves toward
it. The sound stimulus stays active throughout the test, in-
cluding while the subject is turning to identify the source.
The sound stimulus may consist of a single sound source
in free field or more complex acoustical situations, e.g., a
sound source in a reverberant room or multiple coherent
sound sources.

The task of the subject is to rotate their head or body until
the sound source is perceived to be in front of them. Once
confident about the direction of the perceived sound source,
the subject confirms the choice. The perceived sound source
stays in a fixed position in space.

The experiment could be carried out in an actual physi-
cal setting, e.g., with a loudspeaker in a reverberant room.
Alternatively, the desired physical setting can be simulated
and the resulting binaural stimulus played back through
headphones. In this case, the binaural stimulus has to be
smoothly updated in real-time as the subject turns, so as
to mimic the change that the subject would experience in
an actual physical setting with an external stationary sound
source.

In order to isolate sound perception as the only factor
influencing the decision, no visual cue about the position of
the sound source is available. Furthermore, the initial look
direction of the subject with respect to the sound source is
random and uniformly distributed.

Fig. 1 shows the apparatus used in the large-scale exper-
iment described in detail later in Sec. 4. In this experiment
subjects wore headphones and stood on a rotating platform.
They could freely turn themselves by applying force on a
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Fig. 1. Apparatus used in the large-scale auralized experiment.

stationary wheel in the center of the platform. A gyroscope
fixed to the platform measures the platform rotation, and
this information is used to update the binaural stimulus in
real time. Here, the subject is trying to localize a station-
ary sound source in the stationary virtual room by rotating
themselves on the platform.

Another example of the methodology described in this
section is the echolocation experiment of the type consid-
ered by Pelegrin-Garcia et al. in [11] and subsequent works
by the same authors. In this class of experiments, subjects
wear head-tracked headphones and a lavalier microphone.
Self-generated oral sounds are picked up by the microphone
and are processed by a real-time audio processor that sim-
ulates the presence of a stationary virtual wall somewhere
around the subject. Subjects are asked to turn toward the
virtual wall. Here, the perceived sound source sought by
the subjects is the acoustic echo of their own voice.

User responses can be divided into three classes. The
first class consists of responses in which the subject cor-
rectly identified the sound source within a certain angular
tolerance. The second class consists of responses where the
subject experienced a front/back confusion. In this case the
responses are concentrated around the opposite direction.
This is due to the fact that when the subject turns toward the
perceived sound source, the cone of confusion [1] collapses
onto the median sagittal plane. The third class consists of er-
roneous responses; these include cases where, for instance,
the subject could not identify the sound source, did not
understand the task, or ended the task early.

2 ELEMENTS OF CIRCULAR STATISTICS

The data analysis of localization experiments typically
involves aperiodic statistical moments, e.g., mean, vari-
ance and mean squared errors, and statistical tests that as-
sume normally distributed data, e.g., t-test and ANOVA
[3]. While the normal distribution is an acceptable approx-
imation in some cases, angular data is periodic in nature,
thus circular statistical moments and circular distributions
should be used instead. This section briefly reviews el-
ements of circular statistics. Thorough treatments of this
topic can be found in Mardia and Jupp [12] and in Fisher
[13].
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Let fo(9) be the probability density function (PDF) of
the continous circular random variable ®, with fg(%) >
0, fo(®+2m) = f(8) and [ fo(8)d9 = 1. The I-th
trigonometric moment of ® is defined as

2n
vi =E["°] = f fo(9)e'’dv, (1)
0

which can be written in polar coordinates as y, = pje'*,
with i = 4/—1. The parameter p is denoted as mean resul-
tant length, and u/l as the mean direction. Due to the impor-
tance of these two statistics, p} and W} are usually written
simply as p and p, respectively. In the context of this paper
W indicates the direction of the perceived sound source. The
cosine and sine moments are defined as the real and imag-
inary parts of y;: o = E[cos(/®)] and B; = E[sin(/®)].

The I-th central trigonometric moment of ® is defined
as the /-th trigonometric moment of the random variable ®
— 1 and are denoted here by vy;:

27
v = E[e"©7W] = Ffo(®e' "Wy, 2)
0

The corresponding central cosine and sine moments
are oy = E[cos(I(® — )] and B; = E[sin(/(® — n))],
respectively.

The central trigonometric moment can be expressed as a
function of the (non-central) trigonometric moment as

Vi = E[eﬂ@]e—ilu — y;e—ilp. — p;eiu;e—ilu' (3)

Therefore y; = pje'™ with p; = ) — I and p; = pj.

Consider now N sample observations of ®, denoted in
the following as 6 = [0y, ..., Oy]”. In the context of this
paper the sample observations 6 are the angles reported
by the subjects, and N is the number of experiments for a
certain condition. The sample equivalents of o; and f; are
given by

N N
1 1 .
a 5 Y " cos(l6,) and b) = v Y~ sin(l6,). “4)
n=1 n=l1

From the sample moments a; and b;, one can derive the
sample equivalents of p and p as

R=\/a*+b7 &)

tan~" (b /a}) a; =0
| ) a) + g <0

Dl

(6)

The von Mises (vM) distribution is among the most ex-
tensively studied circular distributions. The PDF of the vM
distribution is given by

e~ cos(9—p)

27lp(x)

where I(k) is the modified Bessel function of the first kind
of order zero. The parameter k is the concentration parame-
ter. For k = 0, the vM distribution degenerates to a uniform
distribution. On the other hand, for large k the vM dis-
tribution tends to a normal distribution with variance 1/k.

Jo(¥:p, k) = )
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Closed-form maximum likelihood (ML) estimators of the
parameters of the vM distribution are available in the liter-
ature, together with one-sample and two-sample statistical
tests.

The vM distribution is well suited to model the angu-
lar dispersion around the perceived angle in cases where
the subject correctly identified the sound source. However,
as will be shown later in this paper, in the presence of
front/back confusions and random errors the vM distri-
bution and the associated statistical tests fail. In order to
model front/back confusions, a suitable distribution is the
so-called 3-parameter von Mises mixture (VMM3), which
is a mixture of two von Mises distributions having the same
concentration parameter k but mean directions that are
apart. This distribution has a PDF given by

peKCOS(ﬂ*M) + (1 _ p)echos(\‘)fu)
o(9; 0, k, p) = . (8
Jo(O; . k, p) 1) 3

where p € [0, 1] is the convex combination parameter.
The shape of the vM and vMM3 distributions can be seen,
for example, in Fig. 9. Closed-form natural estimators (i.e.,
method of moments-based) exist for the vMM3 distribution
[12]. One-sample tests using numerical ML optimization
were studied by Grimshaw et al. [14].

3 VON MISES AND UNIFORM MIXTURE (vMUM)
MODEL

As will be shown later in this paper, the vMM?3 model and
the associated one-sample and two-sample statistical tests
perform poorly in the presence of uniformly-distributed
random errors. This motivates the von Mises and uniform
mixture (VMUM) statistical model, which is presented in
this section.

3.1 Model Definition

Since the initial look direction of the subject is drawn
from a uniform distribution, it is reasonable to model the
erroneous decisions as uniformly distributed. Consider then
the following statistical model:

So(%; 1, K, p1, p2, P3)
_ pleKcos(ﬂﬂL) + pzefkcos(\‘}fu) N &
n 27t1o(K) 27

(€))

with p1, po, p3 € [0, 1] and p; + p» + p3 = 1. This model will
be referred to as vMUM in the following. Here, the values
P1, P2, P3 can be seen as simple parameters of the model. A
different interpretation of these values is to consider them
as the probability mass function (PMF) of an unobserved
latent variable describing whether the subject experienced
a frontal image, a front/back confusion or made a random

. L. . K Cos(9—|1) —kcos(B—j1)
error. With this interpretation, the terms < £

2l T 2mlo(<)
and ﬁ take the meaning of the PDFs of the incomplete data
while fo(9%; W, K, p1, p2, p3) takes the meaning of PDF of
the complete data.
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The central moments of ® can be written as

o = E[cos(I(© — ))]

I
_ /((“;( L (=1 pa) + psbi. (10)
B, = E[sin(l(© — w))] = 0, (an

where 9, is the Kronecker delta function. Appendix A.1
provides a proof of this result.

3.2 Parameter Estimation

3.2.1 Method of Moments Estimator
(vMUM-MME)

Similarly to the derivation of the method of moments esti-
mator (MME) for the vMM3 distribution [12], consider the
random variable associated with the double-wrapped angle,
i.e., ® =20. The PDF of a double-wrapped variable can be
written as [12] fo(@) = 3 fo(¢/2) + 3 fo(9/2 + ), and
thus, with simple trigonometric and algebraic manipula-
tions:

Fol@) = Pt —(P1+P2)’

2 10 = cosh(k cos(@/2—W)) + 5ot

where the dependency on the parameters is omitted for
clarity. The advantage of considering the random variable
® instead of the original random variable ® is that the
parameters p; and p, do not appear separately but only as
p1 + p2. This enables all the parameters to be estimated one
at a time, as explained in the following.

The central moments of ® can be calculated as

I5(k) T -

o = Elcos(I(® —2n))] = Pw—— To(K)

B =0,
where p,, = p; + p>. Appendix A.2 provides a proof of
thisresult. Since B}’ = 0, theny;” = o’ + i} = o;". Using
Eq. (3), the /-th trigonometric moment can therefore be
written as

wo__ w2l
v =vi'e (pw

Io(k)

Since p,, 112’((53 + (1 — py)dy € R, then Ly =2Ip. Ap-
plying the method of moments to the phase of the first
trigonometric moment, yl’“, gives ¢ = 2{i, where ¢ is the
mean sample direction of @, and thus

DPuw)da

Iy()

+(1 - Pw)521> e (12)

¢
== 13
== 13)
The first and second moments of @ are given by
1
o = po 2 g qu = p, 20 (14)
Io(k) Io(1)

respectively. Assuming that ZEE; # 0, or, in other words,

that k # 0, one can isolate p,, from a}” and replace it in the
expression of ay’, which gives

Ly(k
oy =ay L) ).
(1)
By replacing the moments with their sampled equivalents,
an estimate of the concentration parameter k can be taken

s)

J. Audio Eng. Soc., Vol. 65, No. 12, 2017 December

LOCALIZATION EXPERIMENTS WITH REPORTING BY HEAD ORIENTATION

as the solution of

1 N
< Z cos(2(¢y —211))

=~ Zcos(% - “(f;. (16)
The value of & is found using non-linear optimization and
is called MME of k. Notice that a similar step is necessary
to obtain the parameter k of the vMM3 model.
The convex parameter p,, can now be estimated using the
expression of the first central moment:

. I
Do cost — 2 = pu e a”

n=1

Notice that isolating p,, from the above equation may pro-
duce a solution outside the closed interval [0, 1]. This is
the same problem encountered in the estimation of the
vMM3 distribution parameters [12], and, more in general,
in method of moments estimates. When this happens, one
approach is to find the value of p,, € [0, 1] that best satisfies
Eq. (17), e.g., in the least square sense. Another, simpler
approach is to associate the value p,, = 0 to all negative
estimates and the value p,, = 1 to all estimates larger than
one. This approach is the one used in the simulations pre-
sented in this paper for both the vMM3 and the vMUM
estimates.

It only remains to estimate one of the two parameters p;
and p», with the second being determined via the expression
pw = p1 + p2. Using Eq. (10), the first central moment of
the unwrapped random variable ® can be written as

1,(<) 1)

ar = (p1 — p2)1 O =(2p1 - pw)IO(K) .

By applying again the method of moments, the parameter
p1 can be estimated as the solution of

(18)

1< . . h(®)
= D €08 — i) = 2p1 - P (19)

n=1

In summary, an estimate of the model parameters can be
obtained as follows:

n= ¢/2
Ky LSV cos2(d, — 211))
=13V cos(d, — ZM)%
€0, 11: 53N cos(dn — 2) = pu ZEE;
prelo,1]: + SN cos®, — )
P2 €[0,11: puw = p1 + o

which will be referred to as the vM UM method of moments
estimator (VMUM-MME) below.

In practice, this procedure yields large values of K when
the ratio of the sample moments ay’ /a}’ is close to unity. In
order to alleviate this issue, after obtaining a first estimate
of k and p,,, one can refine the estimate of k by solving
Eq. (17) for k (instead of for p,, as done in the procedure

= 2p1 = Pu) 7
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described above). It was found empirically that small fur-
ther improvements can be obtained by iteratively solving
Eq. (17) for k and then for p,,. In the results presented in
this paper, two such additional iterations are carried out.

3.2.2 vMUM Maximum Likelihood Estimator
(vMUM-MLE)

The maximum likelihood estimator (MLE) of the vMUM
model parameters is obtained as

{iL, &, P1, P2, P3}
=argmaxu,|c,p|,p2,p3f®(e; W, K, p1, p2, p3)7 (20)

subject to py, p2, p3 € [0, 1] and p; + p» + p3 = 1. Here,
the PDF fo(0; W, K, p1, p2, p3) is seen as a function of
the parameters for a fixed set of sample observations, 6,
and represents the likelihood function. Since a closed-form
solution of this problem is not known, it is necessary to
resort to nonlinear optimization. As noted in Sec. 3.3, it is
important to initialize the algorithm carefully so as to avoid
convergence to a local maximum. Unless stated otherwise,
the initialization used in the simulations of this paper will
be the vYMUM-MME estimate.

3.3 Performance Analysis of Parameter
Estimation

The performance of the proposed estimator is assessed
via Monte Carlo simulations. A total of 10,000 sets of N
samples are generated using the vMUM statistical model.
The random samples are generated using the algorithm pro-
posed by Best and Fisher [15]. For each set, the parameters
are drawn from uniform distributions with p ~ (0, 27),
Kk ~ U0, 100), po ~U(0, 0.3) and p3 ~ U(0, 0.3), where
the symbol ~ stands for “distributed as.” The parameter p,
is then obtained as p; = 1 — pr — p3.

The performance is compared to the standard non-
Bayesian MME of the vMM3 parameters [12], which is
termed here vMM3 method of moments estimator (VMM?3-
MME).

The simulations are run using Matlab R2015b with the
default random seeding. The trust-region-dogleg algorithm
(Matlab command fsolve) is used to find k in Eq. (16)
and in a similar step required by the vVMM3-MME [12].
The sequential quadratic programming (SQP) algorithm
(Matlab command fmincon) is used to solve the constrained
optimization problem involved in the ML estimations.

The mean squared error (MSE) is used here as metric to
assess the estimators performance. MSE values above the
95-percentile are considered as outliers and are removed
from the data. Unless stated otherwise, the sample size is
N = 20.

3.3.1 Performance of vMUM-MLE for Different
Starting Points

In order to assess the sensitivity of the VMUM-MLE esti-
mate to its initialization, Monte Carlo simulations with dif-
ferent starting points were run. The first case is the vYMUM-
MME estimate. The second case is a random starting point.
Here,  and k are drawn from uniform distributions with
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Fig. 2. Mean squared error of the vMUM-MLE estimator for var-
ious initializations: random starting point (——), vVMUM-MME
starting point (- - =) and full-search starting point ( ). Results
obtained from Monte Carlo simulations.

w ~ U0, 21) and k ~ U(0, 100). Notice that this choice
of k gives the random estimate a slight advantage because
the range corresponds to the actual range used to generate
the data. The parameters pi, p», and ps3 are all drawn from
a uniform distribution between 0 and 1 and subsequently
normalized such that p; + p» + p3 = 1. The third case is
obtained from a grid-search using 10 points across each of
the five dimensions in the parameter space (it is assumed
that k € [0, 100], again giving it a slight advantage), which
together amount to a total of 10* points.

Fig. 2 shows that the random starting point results in a
very poor performance, indicating that the likelihood func-
tion has multiple local maxima. The full-search starting
point and the vYMUM-MME starting point perform equally
well. Given that the latter also requires significantly fewer
computations, the vVMUM-MME estimate is shown to be
the most suitable starting point for the vMUM-MLE op-
timization problem and is used throughout the rest of this

paper.

3.3.2 Performance as a Function of p;

Fig. 3 shows the mean squared error of the different es-
timators as a function of pj3. It can be observed that all the
estimators perform equally well for values of ps; close to
zero. However, as p3 increases, the vMUM-based estima-
tors significantly outperform the vMM3-based one. Hence,
the vMUM-based estimators can be seen to be more robust
to the presence of uniformly-distributed errors.

3.3.3 Performance as a Function of N

Fig. 4 shows the mean squared error of the different
estimators as a function of the sample size N. It can be
observed that the vYMUM-based estimators outperform the
vMM3-based one. The vMUM-MLE and vMUM-MME
estimators perform equally well, except for the estimation

J. Audio Eng. Soc., Vol. 65, No. 12, 2017 December
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Fig. 4. Mean squared error of the vVMUM-MME estimator
(=), VMUM-MLE estimator (- - -) and VMM3-MME esti-
mator ( ) as a function of the sample size N. Results obtained
from Monte Carlo simulations.

of the concentration parameter k, where the vYMUM-MME
outperforms vVMUM-MLE for sample sizes smaller than
around N = 25. This may seem surprising due to the fact
that the MLE has a higher likelihood function than the
MME. This however does not imply a lower MSE, and, in
fact, some ML estimators are known to have poorer MSE
than method of moments (MM) estimators in cases with
small sample sizes.

3.4 Single-Sample Test of the Mean Direction

Consider the case where one wishes to test whether the
data is drawn from a distribution with a given mean angle
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Wo. For instance, a hypothesis tested later in the paper is
whether the data has a zero directional mean, i.e., Lo = 0.
Assume that the a priori probability on whether this is true
or not is unknown, as is the case in typical listening ex-
periments. This amounts to the following non-Bayesian
hypothesis test:

Hp:p=po
, 21
{leu#uo @D

with null hypothesis Hy and alternative hypothesis H;. As-
sume also that the model parameters are unknown. Hence,
this is a non-Bayesian test of composite hypotheses [16].
Notice that whenever front/back confusions are present, the
statistical model is bi-modal and m-symmetric, and there-
fore testing for @ = o is the same as testing for p =
WMo + T.

In this paper P; = Pr(H;; Hy) denotes the probability of
rejecting the null hypothesis given that the alternative hy-
pothesis is true, and Py, = Pr(I:II ; Hp) denotes the prob-
ability of rejecting the null hypothesis given that the null
hypothesis is true.

A typical approach in this context is to seek the best Py
for a given Pp,. Toward this end, a commonly used test is
the generalized likelihood ratio test (GLRT), which can be
shown to have certain optimality properties [16]:

N Qrpaz( N f@(ev ﬁ‘v k\:’ ﬁlv 1327 ﬁ3) 22

R(e) _ WK ppa,ps ' — 2 N, (22)
_max_ fo(0; o, K, p1, P2, P3) g,
K, P1,P2,P3

where (1, R, p1, P2, p3 are the ML estimates under the hy-
pothesis H; and are termed unrestricted MLE, K, Py, P2, P3
are the ML estimates under the hypothesis Hy and are
termed restricted MLE, and \ is a desired threshold.

The restricted MLE is calculated as in Sec. 3.2.2 but with
the constraint . = . The unrestricted MLE is also calcu-
lated as in Sec. 3.2.2, using the restricted MLE as starting
point, which guarantees that R(0) is larger than one. Using
the restricted MLE as starting point, however, sometimes
causes the optimization algorithm to become stuck in a local
maximum near L = Lg. To overcome this issue, the unre-
stricted MLE is calculated again using the vMUM-MLE
as starting point. Between the two so-obtained unrestricted
MLEs, the one with higher likelihood value is chosen.

Regarding the choice of the threshold &, consider the
transformation L(6) = 2In R(6) of the likelihood ratio:

ﬂ kr;)la;; f? f(“)(e;p“a '27 ﬁla i)25 i)3) H]

L(0) = 2[p 128 —_>E (23
_max_ fo(8; o, K, p1, P2, P3) g,
K,P1,P2,P3

where £ = 2In\. The above ratio is typically termed log-
likelihood ratio (LLR). Consider the PDFs of the random
variable L(®) for observations obtained under the two dif-
ferent hypotheses, fi(I; Hy) and f;(I; Hy). The probabil-
ities Py and Py, can be written as Py = f;o fr(l; Hydl
and Py, = f;o fL(l; Hp)dl, respectively. The threshold & is
chosen so as to obtain a Py, that is equal to a desired value,
typically Py, = 0.05. This requires knowledge of f; (I; Hy).
A powerful result in detection theory [16] states that for
N — oo the log-likelihood ratio under H is chi-squared
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Fig. 5. Cumulative density function (CDF) of the log-likelihood
ratio of the single-sample statistical test for different values of Nin
comparison to the x? asymptotic approximation. Results obtained
from Monte Carlo simulations.

distributed, i.e., f1.(I; Hy) ~ xf, with 7 the number of de-
grees of freedom. For the test Eq. (21), r = 1.

In order to assess whether X% is a reasonable approxima-
tion for finite N, Fig. 5 shows the PDFs of f7 (I; Hj)) generated
using Monte Carlo simulations (10000 tests) with the same
setup of Sec. 3.3. It may be observed that the x% asymptotic
approximation is already reasonably accurate at N = 20.
Thus, if a Py, = 0.05 is sought, the threshold can be simply
chosen as § = fX%(l — 0.05) = 3.8415. With smaller sam-
ple sets, however, it is advisable to choose the threshold
in some other way, e.g., using Monte Carlo simulations di-
rectly. For instance, if one uses the threshold & = 3.8415
for N =5, then the actual Py, is not Py, = 0.05 but rather
Pr, = 0.13. If one wishes to achieve Py, = 0.05 with N =5,
then the threshold &€ &~ 5.5 should be used instead.

3.5 Performance of Single-Sample Test of the
Mean Direction

This section analyzes the performance of various single-
sample tests using Monte Carlo simulations. The setup of
the simulations is the same used in Sec. 3.3 and the number
of samples is N = 20.

The proposed vMUM test is compared to a vMM3 test,
a vM test, and the standard ¢-test. The vMM3 test is that
described by Grimshaw et al. [14]. Here, the algorithm’s
starting point (which was not specified in [14]), is taken as
the vVMM3-MME. The vM test is the standard likelihood
ratio test with unknown concentration parameter (see [12],
page 122). Notice that all these tests assume the x% asymp-
totic approximation. The threshold & is chosen such that
P, = 0.05 in all cases.

The comparison also includes the standard #-test [16].
The f-test assumes that the data is normally distributed
and, more importantly, aperiodic. The interval chosen to
represent the angles is thus crucial. Indeed, if one uses
the angles representation in the [0, 27) interval, then the
sample mean, Z,]zv=1 0,,, will not be zero even when L = 0. In
this section the interval is taken symmetrically around .
Notice, however, that this device does not solve the issue of
treating a periodic random variable as aperiodic. A typical
countermeasure used in the literature is to select errors
close to the hypothesized direction, which are referred to as
genuine errors [9]. In this section genuine errors are taken
as those within =7t/2 of the hypothesized angle Lo, and the
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Fig. 6. Comparison of the ROC curves for the single-sample
statistical test. These curves represent the available trade-offs be-
tween P, and Py, obtained by varying the value of the threshold
€. ROC curves with points close to (P; = 1, Py, = 0) indicate a
test with high performance. Results obtained from Monte Carlo
simulations with sample size N = 20.

Test power

Fig. 7. Test power as a function of p, and p; for the single-sample
statistical test of the mean direction. The top (grey) surface denotes
vMUM, the middle (dark grey) surface denotes vMM3, and the
bottom (black) surface denotes vM. Results obtained from Monte
Carlo simulations with sample size N = 20.

associated test is referred to as selected t-test. Without loss
of generality, all simulations use o = 0.

3.5.1 Receiver Operating Characteristics (ROC)

Fig. 6 shows the ROC curves for different tests. Here, the
vMUM test has a higher P, than all other tests for all Py,.
In particular, for Py, = 0.05, the test power is Py = 0.93 for
vMUM and P; = 0.89 for yYMM3 when averaging across all
the Monte Carlo simulations. In some cases the difference
in performance is much larger, especially when the mean
angle | is close to . For instance, in simulations where
v — ol = 7/50 (i.e., 3.6°), one has Py = 0.40 for vYMUM
and P; = 0.17 for vYMM3, while for | — po| = /15 (i.e.,
12°), one has P, = 0.90 for vMUM and P; = 0.64 for
vMM3. The standard vM test has a relatively poor perfor-
mance (P; = 0.82 for Py, = 0.05). For small [ — ol the
performance is particularly poor, with P; = 0.11 for [i —
wol = m/15 (i.e., 12°). The t-test has a poor performance.
The selected t-test is, on average, even worse. However, if
one only considers cases where |[L — | < T/4, then the
test performs on a par with the vM test. In other words,
if it can be reasonably assumed that the mean direction is
close to the hypothesized direction, then the selected t-test
performs on a par with the vM test.

3.5.2 Performance as a Function of p, and ps

Fig. 7 shows the performance of the vM, vMM3, and
vMUM tests as a function of p, and p3. All tests have
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essentially the same power when p, = 0 and p3 = 0. As
P> increases, the power of the vM test drops considerably
while both the vMM3 and vMUM tests perform well. As p3
increases, the power of the vMM3 test starts dropping while
the power of the vMUM test remains about the same. In
conclusion, the vYMUM test performs on a par or better than
the other tests and should be preferred whenever front/back
confusions and/or random errors may be present in the data.

3.6 Two-Sample Tests

Given two data samples, 6y of length Nx and 6y of length
Ny, consider the following tests:

Hy : = = Hy:xx =ky =«

0:MKx =Wy Mori 0 Kx Y . (24)

Hy @y # Wy Hy :kx #xy

Here, the a priori probabilities of Hy and H; are unknown.
The distribution parameters are also unknown and are not
necessarily the same for the two distributions.

The GLRT associated to these tests is

max  fx(Ox; Ox, ax) fy(Oy; Vy, ay)

Ox,Vy,ax.ay ZE, (25
max fy@y39,a0 frOrivan g
V,dx,dy

21In

where v, is the parameter being tested (either p or k), with r
€ {X, Y}, while a, contains the remaining parameters (e.g.,
when testing the mean direction, v, = w, and a, = [k,, p1,,
DPars D 3r])-

The restricted MLE at the denominator is found nu-
merically. As a starting point, the value of v is taken
as the vVMUM-MLE estimate of the combined data set
0= [G)T( 9;]T, while the vectors containing the remaining
parameters, d,, are taken as the restricted vYMUM-MLE es-
timates of the two data samples separately. The maximiza-
tion of the unrestricted MLE at the numerator is separable.
Thus the optimal parameters (9,, d,) are the unrestricted
vMUM-MLE estimates of each distribution, which can be
calculated using the method in Sec. 3.2.2. Similarly to the
single-sample test, two starting points are used—the param-
eters of the restricted MLE and the vMUM-MLE estimates.
The one with the higher likelihood value is then chosen.

3.7 Performance of Two-Sample Tests

For space reasons, only the performance of the two-
sample test of mean directions is analyzed here. The pro-
posed VMUM test is compared to the two-sample vM
test with the same concentration pararneterl, which is,
to the best of the authors’ knowledge, the only compa-
rable test available in the literature. For this reason, the
data was drawn from two distributions with the same
concentration parameter, k ~ ¢/(0, 100), and probabilities
p2 ~U(0,0.3), p3 ~U(0,0.3),and p; =1 — p, — p3. In
order to run a fair comparison, the vVMUM test was amended

!The two-sample vM test of mean direction can be found in
Mardia and Jupp [12], page 132. Notice that Eq. (7.3.17) appears
to contain an error. The LRT used in this paper is 2N (R12(Ry +
Ry)/2 — kR —log Ip(R12) + log Iy(k)).
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so as to take into account that ay = ay, which is a straightfor-
ward modification. The mean directions were set as Ly =0
and py ~ U(0, ), without loss of generality. The sample
size was set to N = 20. The results of this comparison show
that for Py, = 0.05, the power of the vM test is Py = 0.76,
while the power of the vMUM test is P; = 0.90.

4 CASE STUDY

This section describes a large-scale auralized experiment
that was held in London during the 2015 Summer Science
Exhibition of the Royal Society. The objective of the ex-
periment was to study the localization performance of a
large number of untrained subjects in an informal setting
and with little training. Furthermore, as explained in detail
in the following, the study aimed at testing several hypothe-
sis: (a) whether two different head related transfer function
(HRTF) datasets led to a significant difference in localiza-
tion performance, (b) whether two different sound samples
led to a significant difference in localization performance,
and (c) whether the localization performance was different
for a free-field simulation and reverberant rooms with dif-
ferent ceiling heights. The latter objective was inspired by a
study by Hartmann [2] where it was shown that a room with
high ceiling resulted in poorer localization, despite having a
higher direct-to-reverberant ratio (DRR) than rooms with
lower ceiling. Hartmann used large rooms with long re-
verberation times. The objective here was to independently
confirm this hypothesis in an auralized experiment and with
typically-sized rooms.

4.1 Participants and Data Monitoring

A total of 893 subjects participated in the experiment. No
personal information of individual subjects was collected.
Their age varied greatly and no gender bias was observed.

The data associated with 40 of the subjects was removed
because they declared that (a) they were deaf in one ear, or
(b) they did not understand the task, or (c) they made a mis-
take in using the interface, or (d) because the subject was
only playing with the apparatus rather than executing the
experiment. An additional 27 tests were excluded because
the equipment was incorrectly initialized. Another 22 tests
were removed because the response was given in less than
one second, which indicated that the subject touched the in-
terface without engaging in the test or by mistake. In case a
subject performed the task under identical conditions more
than once, the additional data points were also excluded.
The above data selection reduced the number of subjects
from 893 to 844, and the total number of tests reduced from
1979 to 1655.

4.2 Apparatus and Procedure

The apparatus consisted of a circular rotating platform
with a diameter of about 70 cm and a height of 20 cm. The
subjects stood on the rotating platform and they could freely
turn themselves by applying force on a stationary wheel.
The wheel was positioned in the center of the platform at
a height of about 94 cm. Subjects wore a pair of Bang &
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Olufsen BeoPlay H6 headphones connected to an iPad Air
that was mounted on a pole in front of them at eye level.

The iPad’s motion sensor was used to measure the ro-
tation of the platform. In order to assess the accuracy of
the motion sensor, the iPad was turned 10 times around
itself and back, which gave an average deviation of about
2° from the expected 180°. Leaving the iPad stationary on
a stable horizontal surface gave an average maximum drift
of 0.67° over 10 repetitions. Please notice that the iPad’s
motion sensor was used as the reference for both the audio
rendering and for recording the subjects’ angular response,
and therefore a drift of the motion sensor will have the same
effect on both.

The subjects controlled the experiment using a simple
custom-made GUI displayed on the iPad Air (see [10] for
screenshots of the GUI). They could choose between two
conditions—an anechoic condition and a reverberant con-
dition the details of which are described in the next section?.
They could run the conditions in any desired order and any
number of times.

The subjects were asked to remain still and to keep look-
ing at the iPad which displayed a real-time animation of
the rotation of the platform to hold their attention. Once
the audio started, their task was to rotate the platform until
the sound source appeared to be in front of them. Subjects
were told that they could take as long as needed to make a
decision. The audio sample was looped until they recorded
their decision. Subjects recorded their decision by tapping
on a button stating “Touch here when the sound source ap-
pears to be in front of you” on the GUI. The GUI would
then show their performance in terms of angular error.

Itis worth observing here that the apparatus and measure-
ment system is of such a specific nature that one should be
careful in making conclusions in absolute terms. The data
analysis will thus focus on the relative differences between
conditions, for which the impact of the apparatus and mea-
surement system can be factored out.

4.3 Sound Stimuli

Two anechoic sound samples from the “Music for
Archimedes” CD were used. One was track 4, a female
speech sample, and the other was track 26, a sample of an
African percussion instrument. The two samples were cut at
28 seconds and 25 seconds, respectively, in order to reduce
memory spooling. The levels were manually adjusted until
the two sound samples had the same perceived loudness,
which resulted in the speech sample being reduced by 3 dB
with respect to the original level.

Two HRTF datasets were used—the MIT KEMAR man-
nequin [17] and subject number 58 of the CIPIC database
[18], both having a 5° horizontal resolution. For every sub-
ject one of the two HRTF datasets and one of the two
anechoic samples was chosen at random.

The anechoic signal was convolved with HRTFs using
time-domain filters running in real-time on the iPad. When

2A third condition with a sound source and a single echo was
also included, but results were not included in this paper for space
reasons.
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Fig. 8. Setup of the reverberant simulation. The black circles
denote the position of the sound sources (only one source playing
at any one time).

the platform (and thus the iPad) rotated, the coefficients of
the filters were updated accordingly in real-time. In other
words, the iPad was used as a head tracker in this experi-
ment. As mentioned earlier, subjects were asked to remain
as still as possible and to keep looking at the iPad, but their
head and body were not physically restrained. In updating
the HRTF filters, no interpolation was used. No audible
artifacts were reported, owing to the slow rotation speed
allowed by the rotating platform.

The subjects could choose between two conditions—an
anechoic condition, where the sound source was placed
in free field at the same height as the listener and at a
distance of 1.4 m, and a reverberant condition, where the
room acoustic response was simulated in real-time using a
scattering delay network (SDN) [19]. SDN was chosen to
generate the reverberation because of its ability to reproduce
faithfully the important physical (e.g., early reflections, re-
verberation time) and perceptual features (e.g., normalized
echo density) while running in real-time.

Table 1 lists the three room setups that were used and in
each case shows the value of the DRR and the reverberation
time (RT60). The dimensions of the "typical room" are
ITU-R-compliant (BS.1116-1) and are identical to those
of the "high reverberation" case. The "high reverberation”
and "high ceiling" cases have the same Tgy. The listener
and sound sources were placed in the room as depicted in
Fig. 8. The setup was chosen so as to be simple to describe,
while at the same time avoiding the occurrence of sweeping
echoes, which have been shown to occur in rectangular
rooms with regular setups [20]. For each test, one of the
three room setups and one of the two sound source positions
was selected at random.

The frequency response of the Bang & Olufsen BeoPlay
H6 headphones was equalized via monophonic minimum-
phase inverse filters provided by the manufacturer.

4.4 Model Comparison

Fig. 9 shows the empirical PDF of the localization er-
rors under the anechoic condition (N = 751) and the result
of fitting various statistical models to the data. Fig. 9a in-
cludes the Gaussian model and the vM model, both with
ML estimate of the parameters, and the vMM3 model with
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Table 1. Characteristics of the room simulation in the reverberant condition.

the preferred model here.

Condition Room width Room length Room height Wall absorp. RT60 DRR

Typical room 7.35m 533 m 25m 0.36 0.30s 1.0dB

High reverb. 7.35m 533 m 2.5 m 0.30 045s 0.2dB

High ceiling 7.35m 533 m 8.0m 0.36 0.45s 4.5dB
5 an additional model allowing for different concentration
§ parameters was also investigated. This model was termed
ai +]()3 ata vMUMKk and is shown in Fig. 9. As may be observed,
= j V&usman 1 the vMUMk and vMUM models fit the data equally well,
,§ M3 || with vMUMEKk also having a Pearson correlation of 0.97.
z Therefore, owing to its simplicity and the availability of
% — wg closed-form MM estimators, the vMUM model remains
=
=¥

Angle [rad]
(a) Data fitting with Gaussian, vM and vMM3 models.

=
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(b) Data fitting with vMUM model.

Fig. 9. Empirical PDF of the anechoic condition and fitting of
the statistical models discussed in this paper. The sound source is
positioned at 0°.

MM estimate of the parameters. It is clear that the Gaus-
sian model fits the data poorly. The Pearson correlation be-
tween the empirical PDF and the Gaussian PDF, used here
as a measure of goodness-of-fit, is 0.42. The vM model
has an improved fit to the data but does not account for
the front/back confusions, and the model’s concentration is
insufficient for frontal sound sources (Pearson correlation
0.55). The vMM3 model achieves a better fit in respect of
the front/back confusions (Pearson correlation 0.85). How-
ever, also in this case, the model fails to represent the higher
concentration of the data, which is due to the fact that it is
trying to fit the uniformly distributed errors by means of the
front and back vM marginal distributions. By including the
error marginal distribution explicitly, the vMUM model is
able to provide a better fit to the data than the other models
investigated, as shown in Fig. 9b. The Pearson correlation
for both the vVMUM-MLE and vMUM-MME models is
0.97.

In the vMUM model, the concentration parameters for
the frontal and front/back confusions vM marginal distri-
butions are identical. However, it could be hypothesized
that front/back confusions are associated with a higher un-
certainty and thus a lower concentration. For this reason,
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4.5 Results
4.5.1 Angular Error and Concentration Parameter

Table 2 presents a summary of the statistics for the an-
gular error, i.e., the difference between the response angle
and true angle. The probability of identifying the frontal
source is p; = 0.76, while the probability of experienc-
ing a front/back confusion is p, = 0.09. The probability
of making a uniformly distributed decision, or, in other
words, a mistake, is p3 = 0.15. From a frequentist point
of view, 15% of subjects made a mistake. Notice that this
includes cases where the subject made a mistake that was
close to the correct direction (or to the opposite direction)
by chance. These probabilities are similar across individual
conditions.

In the anechoic case, the mean directional error is +1.4°.
Using the single-sample test proposed in Sec. 3.4, the hy-
pothesis Hy : | = 0 can be rejected at the 0.05 significance
level. The p-value, i.e. p = f;gf fr(l; Hp)dl, is p < 0.001,
which indicates a strongly significant result.

This rightward bias has been observed before in the litera-
ture [21] and implies some kind of physiological asymmetry
in the auditory system itself. While the present experiment
supports the findings in the literature, it cannot be ruled out
that the bias observed here is due to systematic experimen-
tal errors such as asymmetries in the headphones or in the
HRTF datasets.

Considering all the conditions together, the KEMAR and
CIPIC datasets have a mean directional error of +2.3° and
+1.1°, respectively. The two-sample test proposed in Sec.
3.6 reveals that the difference is statistically significant
(p = 0.02). Furthermore, there is a borderline significant
trend in comparing the concentration parameters (p = 0.10),
with the KEMAR having larger concentration than CIPIC.
This difference is strongly statistically significant if one
considers the room simulation with the typical room setup
alone (p<0.001).

The data indicates that speech yields a stronger right-
ward bias than the percussion instrument sound. Across
all conditions there is only a borderline significant trend
(p = 0.11). The difference is not significant in the ane-
choic case (p = 0.99) but is significant in the reverberant
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Table 2. Statistics of the angular error. Positive values of p indicate a rightward bias. The first column denotes the number of samples,
N. The following 5 columns denote the vMUM-MLE estimates. The following 4 groups of 3 columns analyze differences in mean and
concentration parameter between the KEMAR and CIPIC HRTF datsets, and mean and concentration parameter between speech and
percussions audio samples. The p-values are calculated using the proposed two-sample vMUM tests. Values in boldface indicate
statistical significance at the 0.05 significance level.

Condition N bWk pr pp p3 WKEM. wCIP. p kKEM. kCIP. p jspe. pper. p Kkspe. kper. p

All com- 1655 1.7° 425 0.76 0.09 0.15 2.3° 1.1° 0.02 46.8 394 0.10 2.1° 1.3° 0.11 41.6 43.6 0.65
bined

Anechoic 751 1.4° 40.8 0.76 0.10 0.14 1.7° 1.2° 051 443 379 031 14° 14° 099 43.1 389 0.52

Reverberant 904 1.9° 439 0.76 0.08 0.16 2.8° 1.1° 0.01 498 404 0.14 26° 1.2° 0.04 409 472 031

Rev. typical 312 1.9° 40.2 0.78 0.08 0.14 2.5° 1.3° 033 664 324 0.00 28 0.9° 0.10 41.5 40.2 0.88

Rev. high 296 3.1° 46.2 0.74 0.07 0.18 3.6° 2.3° 025 41.6 555 027 44° 2.1° 006 31.1 59.7 0.02
reverb.

Rev. high 296 0.8° 50.1 0.77 0.08 0.15 2.0° —0.6° 0.02 495 539 0.72 09° 0.7° 0.87 545 46.0 048
ceiling

conditions (p = 0.04). To the best of the authors’ knowl-
edge, this bias has not been observed before.

In the high reverberation condition, there is a statisti-
cally significant difference between speech and percussion
sounds (p = 0.02), with percussion sounds having a larger
concentration than speech. This suggests that, in the pres-
ence of reverberation, percussion sounds are easier to local-
ize in comparison to the speech signal, which is consistent
with results in the literature [1].

Finally, results of this experiment not included in Ta-
ble 2 show that a larger number of subjects experience a
front/back confusion in cases where the sound source starts
behind the subject. Indeed, for tests where the initial look
direction is less than 90° away from the source, the vMUM-
MLE parameters are p; = 0.79, p, = 0.06, p3 = 0.15, while
for tests where the initial look direction is more than 90°
away from the source, the vYMUM-MLE parameters are
p1 = 0.74, p» = 0.11, p3 = 0.15, which shows that the per-
centage of front/back confusions has nearly doubled. The
percentage of front/back confusions increases even more as
the initial look direction approaches 180°, with p, = 0.25
for initial look directions larger than 160° from the source.

The results presented have not been corrected for multi-
ple comparisons.

4.5.2 Time to Complete Experiment

Subjects could choose whether to run the anechoic or
the reverberant conditions first. Unsurprisingly, there was
a clear learning effect, with the first condition taking much
longer than the second. Those who started with the anechoic
condition took on average 30.4 s for the anechoic condition
and 23.4 s for the reverberant condition. Conversely, those
who started with the reverberant condition took on average
22.3 s for the anechoic condition and 31.7 s for the rever-
berant condition. In order to compare the two conditions
fairly, the dataset was pruned until it contained an equal
number of subjects who started with each one?.

3All subjects who started with the reverberant condition were
kept (because there were fewer of them). Then, of the subjects
starting with the anechoic condition, only those who carried out
the experiment at a similar time to the ones starting with the
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The results are reported in Table 3 and show that subjects
take longer in the high ceiling condition than in all the other
conditions. Two-sample #-tests with right tail reveal that the
result is statistically significant in all cases.

This result may seem surprising. Indeed, the high ceiling
condition has the highest DRR of all three (see Table 1)
and has the same reverberation time as the high reverbera-
tion condition. In contrast, the high reverberation condition
took about the same time as the typical room condition
(25.9 s and 25.5 s, respectively). As mentioned earlier this
phenomenon has been observed before in the work of Hart-
mann [2]. Hartmann hypothesized that it is easier for the
auditory system to localize the sound source if the ceiling
reflection arrives before the onset of the precedence effect.
The rationale is that there is an additional reflection that
is temporally fused with the line of sight component and
is azimuthally co-directional with the sound source. While
Hartmann supported his conclusions based on experiments
in a large room with long reverberation times the results pre-
sented here suggest that the same phenomenon also arises
in small, ITU-R-compliant rooms.

Finally, results of this experiment not included in Table
3 reveal that the speech sample took 30.5 s on average,
which is significantly longer than the percussion sample,
22.9 s (p<0.001). This difference could be due to subjects
actively paying attention to what was being said in the
speech sample, or to the fact that percussive signals with
sharp onsets are easier to localize [1].

5 CONCLUSIONS

This paper has presented a circular statistical model for
sound localization experiments that is robust to the presence
of front/back confusions and random errors. Closed-form
MM and ML estimators were presented, with the MM esti-
mators outperforming the ML estimators for small sample
sizes. Single-sample and two-sample tests were proposed
and were shown to have a performance on a par with or

reverberant condition were kept. This particular choice was made
because it allows to factor out possible time dependances of the
experiment (e.g., at peak times a queue would sometimes form
that could put subjects under pressure to complete the test faster).

J. Audio Eng. Soc., Vol. 65, No. 12, 2017 December



PAPERS

Table 3. Statistics of the time to complete the test.

LOCALIZATION EXPERIMENTS WITH REPORTING BY HEAD ORIENTATION

The dataset was pruned to factor out learning effects

(see text). The first two columns denote the number of samples, N and the mean of the time to complete
the test, respectively. The last four columns present the p-value of the interactions across conditions using
a two-sample 7-test with right tail. Values in boldface indicate statistical significance at the 0.05
significance level.

Condition N Mean Anech. Reverb.typical High. reverb. High ceiling
All combined 776 269 s - - - -
Anechoic 388 26.4s - 0.33 0.41 0.98
Reverberant 388 2745 0.24 - - -

Rev. typical 140 25.6s 0.67 - 0.57 0.97
Rev. high reverb. 122 259s 0.59 0.43 - 0.96
Rev. high ceiling 126 309 0.02 0.03 0.04 -

better than prior art tests. The performance of the proposed
data modelling was substantially better in the presence of
front/back confusions and/or random errors. These errors
are common if the experiment is auralized (especially when
using non-individualized HRTFs), if the subjects are un-
trained, if the auditory system is intentionally interfered
with, or if the sound stimuli are particularly hard to local-
ize, e.g., in echolocation tasks.

The statistical framework was used to analyze the data
of a large-scale auralized experiment. Using the proposed
statistical framework, it was shown that (a) a rightward
bias is present in the subjects’ localization responses, (b)
the speech sample is found to have a larger rightward bias
than the percussion sample under reverberant conditions,
(c) the KEMAR HRTF dataset results in a larger bias than
the CIPIC HRTF dataset, (d) under high reverberation, re-
sponses given with the percussions sample had a higher
concentration than with the speech sample. Furthermore,
an analysis of the time it took to complete the experiment
showed that (a) the speech sample took significantly longer
to localize than the percussions sample, and (b) it took sig-
nificantly longer to localize sound in a simulated room with
high ceiling.

Matlab routines implementing the proposed statistical
estimators and statistical tests, together with the data of the
listening experiment, are available online®.
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A.1 PROOF OF CENTRAL TRIGONOMETRIC
MOMENTS OF ©

This appendix derives the expression for the central
trigonometric moments of ®. Starting with the central co-
sine moments:

21
P1 cos(9—
= 19 — keos(B—n) 7
T 221 o cos({(% — p))e
21
P cos(L(8 — pu))e <O W gy
2mly() Jo

3 27
+ = / cos({(§ — )9,
27 0

The above integrals can be simplified by substituting
¢ = ¢ — . Furthermore, since both cos (/¢) and e*<*s®)
are 2m-periodic, then the integral over a period interval is
always the same:

2
P1 T

o = cos(19)e“<sY gy
21 ly(x) Jo
P2 2“ /
cos(l9)e <Y gy
21tly(k) Jo

»3 2n
+ = / cos(IY)dy
27 0

The third integral above can be written as |, OZT[ cos(1Y)dy =
27d;. From Eq. (9.6.19) in Abramowitz and Stegun [22]
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L(z) = 1 [ cos(n9)e**?d9. Here, since the integrand

is even and 2m-periodic, then fozn cos(n®)e? sy =
271,(z). Therefore

P1 P2
= I, — I, (- )
100 () + 100 (—K) + p3§;

Eq. (9.6.30) in Abramowitz and Stegun [22] states
I,(ze™™) = e — imvml,(z) with m integer, which implies
for m = —1 and v integer that I,,( — z) = ( — 1)"1,(z). Thus
the cosine central trigonometric moments are given by

L)
G

Regarding the sine central trigonometric moments, using
similar considerations used for the cosine moments:

oy

T (p1 + (=1)"p2) + p3d;.

Br = Elsin(/(® — )]

P 21 ,
= sin(/19)e* Y dg
2nly(x) Jo

27

P2
2mly(k) Jo
27

sin(/¢)dy

sin(19)e <Y gy’

D3
+2T[ 0

Since all the integrands are odd functions and the integration
interval is across a full period, then g; = 0.

A.2 PROOF OF CENTRAL TRIGONOMETRIC
MOMENTS OF &

This appendix derives the expression for the central
trigonometric moments of ®. Starting with the central co-
sine moments:

pw [T
o = m /o cos(I(¢ — 2))
x (e'“"s(%‘“) + e—K(%—M)) do

1_pw
27

2n

+ / cos(l(¢ —2p))d ¢,
0

The third integral can be simplified by substituting ¢’ = ¢
— 2p and noticing that cos(l¢’) is 2m-periodic, thus
[ cosl(@ — 2m)d g = [37™ cos(18')d Y’ = 27, The first
and second integral, on the other hand, can be simplified by
substituting ¢ = ¥ —

p "
po= — 20¢'
o It [ . cos(2/¢’))

% (elccosnp/ + e—kcosqz’) 2d(P/ + (1 _ pw)sl-

The function cos(2l¢’)) is w-periodic. Furthermore,
e<cos ¥ 4 pmkes¥’ — o(¢') is also m-periodic. Indeed, g(¢’
+ k7t) for k even (k = 2m) is given by g(¢' + 2mm) =
€SV | pmkeos¥ — o(¢/). The same holds for k odd
(k= 2m + 1): g(¢/ + 2m + Dm) = e ¥ 4 ghc0s¢’ =
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g(¢"). Therefore

w Puw T / ( Kk cos ¢’ —K cos ’) /
= 21 ¢ “)d
oy 3l cos(2l¢)) (e +e [0)
+ (1 = puw)d;
pw T 7 < /
— 21 keos ¢’ g
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+/ cos(2l ¢ )e s “’/dqf] + (I = pu)¥
0

- ZH’Z’(K) [0 Ly (k) + L (—)] + (1 — pu)dy.
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where the last step used Eq. (9.6.19) in Abramowitz and
Stegun [22]. Since I,( — z) = ( — D", (2) (see Ap-
pendix A.1), then I( — z) = ( — 1)?I(z) = Iy(z) and
thus

o — I (1)
TS

+ (1 = pu)d.

Regarding the sine central trigonometric moments, using
similar observations considered in Appendix A.1 for ® one
obtains p;” = 0.

995



DE SENA ET AL.

PAPERS

THE AUTHORS

Enzo De Sena

Patrick Naylor

Enzo De Sena is a Lecturer in the Institute of Sound
Recording at the University of Surrey, UK. He received
his B.Sc. degree in 2007 and his M.Sc. degree (cum laude)
in 2009, both from the Universita degli Studi di Napoli
“Federico II”, Italy, in telecommunication engineering.
In 2013 he received his Ph.D. degree in electronic en-
gineering from King’s College London, UK, where he
also served as a Teaching Fellow from 2012 to 2013.
Between 2013 and 2016 he was a postdoctoral Research
Fellow at the Katholieke Universiteit Leuven, Belgium.
He held visiting positions at Stanford University, Cali-
fornia (2013), Aalborg University, Denmark (2014/2015),
and Imperial College London, UK (2016/2017). He is a
former Marie Curie fellow, and his current research in-
terests include room acoustics modelling, multichannel
audio systems, microphone beamforming, and binaural
modelling.

Patrick Naylor is a member of academic staff in the
Department of Electrical and Electronic Engineering at
Imperial College London. He received the BEng degree
in electronic and electrical engineering from the Univer-
sity of Sheffield, UK, and the PhD. degree from Imperial
College London, UK. His research interests are in the ar-
eas of speech, audio and acoustic signal processing. He
has worked in particular on adaptive signal processing for
speech dereverberation, blind multichannel system iden-
tification and equalization, acoustic echo control, speech
quality estimation and classification, single and multichan-
nel speech enhancement, and speech production modelling
with particular focus on the analysis of the voice source
signal. In addition to his academic research, he enjoys sev-
eral fruitful links with industry in the UK, USA, and in
Europe. He is the past-Chair of the IEEE Signal Process-
ing Society Technical Committee on Audio and Acoustic
Signal Processing and a director of the European Associ-
ation for Signal Processing (EURASIP). He has served as
an associate editor of /EEE Signal Processing Letters and
is currently a senior area editor of /[EEE Transactions on
Audio Speech and Language Processing.

Toon van Waterschoot

°

Mike Brookes is a Reader (Associate Professor) in signal
processing in the Department of Electrical and Electronic
Engineering at Imperial College London. After graduating
in mathematics from Cambridge University in 1972, he
worked at the Massachusetts Institute of Technology and,
briefly, the University of Hawaii before returning to the UK
and joining Imperial College in 1977. Within the area of
speech processing, he has concentrated on the modelling
and analysis of speech signals, the extraction of features for
speech and speaker recognition, and on the enhancement
of poor quality speech signals. He is the primary author of
the VOICEBOX speech processing toolbox for MATLAB.
Between 2007 and 2012 he was the Director of the Home
Office sponsored Centre for Law Enforcement Audio Re-
search (CLEAR), which investigated techniques for pro-
cessing heavily corrupted speech signals. He is currently
principal investigator of the E-LOBES project that seeks
to develop environment-aware enhancement algorithms for
binaural hearing aids.

o

Toon van Waterschoot received M.Sc (2001) and Ph.D
(2009) degrees in electrical engineering, both from KU
Leuven, Belgium, where he is currently a tenure-track As-
sistant Professor. He has previously also held teaching and
research positions at Delft University of Technology in The
Netherlands and the University of Lugano in Switzerland.
His research interests are in signal processing, machine
learning, and numerical optimization, applied to acoustic
signal enhancement, acoustic modeling, audio analysis, and
audio reproduction. He has been serving as an Associate
Editor for the Journal of the Audio Engineering Society
and for the EURASIP Journal on Audio, Music, and Speech
Processing, and as a Guest Editor for Elsevier Signal Pro-
cessing. He is a Director of the European Association for
Signal Processing (EURASIP), a Member of the IEEE Au-
dio and Acoustic Signal Processing Technical Committee,
and a Founding Member of the EAA Technical Committee
in Audio Signal Processing. He was the General Chair of
the 60th AES International Conference in Leuven, Belgium
(2016).

996

J. Audio Eng. Soc., Vol. 65, No. 12, 2017 December





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


