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ABSTRACT 
Dialog enhancement (DE) is a feature that allows a listener to increase the level of dialog in a content item relative 

to backgrounds.  DE is “unguided” if only the finished mix is available, meaning that a DE system must estimate 

the dialog.  Spatio-Level Filtering (SLF) is a source separation technology that, when combined with dialog 

classification, allows for high-quality unguided DE for typical entertainment content in a stereo or higher channel 

count format.  SLF exploits spatial and level information and requires little lookahead, memory, computation and 

training data.  To evaluate results, we conduct two subjective listening experiments which indicate favorable 

performance.

1 Introduction 

When experiencing typical television or movie 

content, listeners may struggle to understanding 

spoken dialog  [1], simply prefer to change the 

relative dialog level [2], or both.  Dialog enhancement 

(DE) is a feature which allows users to increase the 

level of dialog relative to other sounds, typically 

referred to as backgrounds or music and effects 

(“M&E”).  Typical backgrounds include music, 

crowd noise, “walla” (crowd din) and special effect 

sounds including Foley.  If a DE system is supplied 

with the original dialog and background (or complete 

mix) tracks, it performs guided DE.  A trivial process

allows relative dialog level to be increased: the

system increases the level of the supplied dialog

track, decreases the supplied backgrounds, or both.

The case where dialog level is increased may be

expressed as:

𝑦 = 𝑔𝑑 + 𝑥 (1) 

where 𝑥  is the original mix signal (consisting of 

dialog 𝑑 plus backgrounds 𝑏), 𝑔 is the dialog boost 

factor derived from listener input, and 𝑦 is the ideal 

dialog-boosted signal.  That is, 𝑦 = (𝑔 + 1)𝑑 +  𝑏.  

This DE method is called “boost type” because the 

dialog level is increased in 𝑦  relative to the input 

signal 𝑥  while the backgrounds remain at their 

original level. The boost gain 𝑔 may be derived from 

the desired decibel increase in dialog 𝑔dB  via 𝑔 =
10^(𝑔dB/20) −  1.  Scaling may also be applied to 𝑦
such that the boosted signal preserves the loudness or 

level of 𝑑 or 𝑦.  For simplicity, this work will assume 

boost type DE only.   

If only the complete mix is available (no original 

dialog track), then the problem is more challenging; 

in order to boost dialog, a system must first estimate 

it via source separation. (For a general review, see e.g. 

[3, 4].) This problem is now termed unguided DE.  

Equation (1) becomes 
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𝑦 = 𝑔�̂� + 𝑥 (2) 

where �̂� is estimated dialog and 𝑦 is now termed the 

estimated boosted signal. This is shown in Figure 1. 

Such problems are generally made easier with more 

input channels, as in 5.1 or higher channel count 

audio (see, e.g. [3]).  For typical delivery, however, 

stereo (2 channel) input is common, and in some 

cases will be the most common format to which a DE 

system has access.  The number of background 

sounds is generally unknown and could be larger than 

one, leading to an underdetermined source separation 

problem (2 channels, more than 2 sources including 

dialog).  It can be made yet more challenging in 

practical application to entertainment content, 

because computation, memory and lookahead may be 

limited, depending on where the DE system exists in 

the creation and delivery chain.  In this work, we 

choose to focus on the stereo case because it is 

common, challenging, and can lead to solutions 

which can be adapted to higher channel-count cases. 

To address these challenges and estimate �̂� , we 

introduce a system which combines spatio-level 

filtering (SLF) source separation with dialog 

classification.  SLF uses the target source signal 

model and features of [5] which was developed for 

stereo music, but with a more general model of 

backgrounds which simplifies the training process. 

SLF extracts signals whose spatial and level 

characteristics make them good dialog candidates, 

and a classifier estimates whether the extracted 

signals (or the original mix) contain dialog.  The 

classification information is used to gate the SLF 

output, thereby producing an estimated dialog signal 

�̂�. This is shown in Figure 2 

DE as defined here substantively differs from other 

audio signal processing goals, such as eliminating 

backgrounds or modifying speech sounds (possibly 

by changing timbre) to increase intelligibility. Such 

efforts may be termed noise reduction (see e.g. [6]) or 

speech enhancement (see e.g. [7]), but they are 

sometimes also called “dialog enhancement.”  For the 

present unguided DE task, the output signals 

deliberately include backgrounds, and the system 

aims to prevent any distortion of backgrounds while 

modifying dialog only by changing its relative level. 

This impacts both signal processing goals and system 

evaluation. 

The SLF source separation system can be optimized 

for various audio applications.  The version described 

here is designed to work with a classifier to extract 

dialog in entertainment content, whether it is center- 

panned, non-center-panned, mixed with delay, phase-

modified or reverberant. This makes it more general 

than a system which extracts only center-panned 

dialog (e.g. [8]).  To do this efficiently, the system 

uses an adaptive approach termed “Shift and 

Squeeze” (S&S). SLF requires little lookahead, 

memory, computation and training data. These 

characteristics make the “SLF + Classification” 

(SLF+C) system suitable for various applications, 

including DE at encode, within cloud-based media 

workflows, or on an endpoint device. 

This paper is organized as follows.  In section 2, we 

describe the SLF model and related concepts.  In 

section 3, we motivate detection of spatially 

identifiable sources and use of the adaptive system. 

In section 4, we describe SLF system operation in 

detail, including perceptual optimizations.  In section 

5, we describe how classification data is combined 

with the SLF system output to produce a dialog 

estimate within latency constraints.  In section 6, we 

introduce the concept of dialog boost quality, and 

provide related results from human listening tests. 

We conclude in section 7 with a summary and 

discussion of future work. 

Figure 1: Estimated boosted signal flow 

�̂�
𝑔
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Figure 2: SLF + classification signal flow. 
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2 SLF Model 

While the SLF system described herein is designed to 

extract any spatially identifiable sources, it is based 

on a core Bayesian SLF system which models and 

extracts panned sources. This section defines the 

corresponding signal model, context, features and 

concepts.  In so doing, we develop an intuition for the 

utility of the information exploited by SLF. 

2.1 Signal Model 

This model assumes basic time domain mixing of a 

target source s1 and backgrounds into two channels, 

termed “left” (𝑥1 or 𝑋1) and “right” (𝑥2 or 𝑋2). The

target source shall be assumed to be amplitude 

panned using the constant power law: 

𝑥1 = cos(𝛩1)  1
𝑥2 = sin(𝛩1)  1

(3) 

where 𝛩1 ranges from 0 (far left) to 𝜋/2 (far right). 

Because the STFT is linear, we may express this in 

the STFT domain as: 

𝑋1 = cos(𝛩1) 𝑆1
𝑋2 = sin(𝛩1) 𝑆1

(4) 

where values exist for each bin 𝜔 and frame 𝑡, e.g. 

𝑋1(𝜔, 𝑡) .  Continuing in the STFT domain, we

express addition of backgrounds 𝐵 to each channel: 

𝑋1 = cos(𝛩1) 𝑆1 + cos(𝛩𝐵) |𝐵|𝑒
𝑗∠𝐵

𝑋2 = sin(𝛩1) 𝑆1 + sin(𝛩𝐵) |𝐵|𝑒
𝑗∠𝐵+𝜙𝐵 (5) 

Here, in addition to a panning parameter 𝛩𝐵 , the

backgrounds 𝐵  have other parameters ∠𝐵  and𝜙𝐵.
These parameters respectively describe the phase 

difference between 𝑆1  and the left channel phase

of  𝐵 , and the interchannel phase difference for 𝐵 

only. (There is no need to include a 𝜙𝑆1  parameter

because the interchannel phase difference for a 

panned source is by definition zero.)  Target and 

backgrounds are assumed to share no phase 

relationship in STFT space, so we will model the 

distribution on ∠𝐵 as uniform. 

One can think of 𝛩1 being a specific single value (the

“panning parameter” for the target source) which 

completely specifies its mixing. There is a 

distribution on its level |𝑆|, which we shall assume is 

approximately known, at least over roughly-octave 

subbands.   

The background spatial parameters 𝛩𝐵   and 𝜙𝐵 ,
respectively panning and interchannel phase 

difference, are understood to have a distribution.  It is 

common for backgrounds to be diffuse, which 

manifests as widely distributed values for 𝛩B and 𝜙𝐵.

As with the target source, there is also a distribution 

on the background level |𝐵| which we shall assume is 

known at least over roughly-octave subbands.  For 

purposes of creating training data, these parameters 

represent all backgrounds, whether they are diffuse or 

concentrated such as in the case of panned 

background sources.  This considerably simplifies the 

Bayesian training process over [5] in which 

backgrounds are assumed to be some number of 

panned sources, each combination of which has a 

Bayesian prior. 

For purposes of this model, the source and 

backgrounds shall only be considered at points in 

time where both are assumed to be “active,” meaning 

that both are present in the mix signal. A classifier 

described below reduces spurious source extraction in 

the absence of a target source. 

2.2  Features 

The SLF system operates in the STFT domain and 

takes only 𝑋1  and 𝑋2  as input.  From these it

calculates SLF features for each 𝜔 and 𝑡: 

𝜃 = arctan (
𝑋2

𝑋1

) 

𝜙 =  ∠ (
𝑋1

𝑋2

) 

𝑈dB = 10 log10(|𝑋1|
2 + |𝑋2|

2)

(6) 

The first parameter, 𝜃, is detected panning for each 
(𝜔, 𝑡) tile.  It can be seen that if a panned source is 

dominant in a given tile (i.e. much higher in level than 

backgrounds), the detected panning will equal its 

panning parameter 𝛩𝑖 .

The second parameter, 𝜙 , is detected interchannel 

phase difference for each tile on the range from −𝜋 

to 𝜋  radians.  (To prevent concentration detection 
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bias, we also define 𝜙2 as the identical data on the 

range from 0 to 2𝜋.) If a panned source is dominant 

in a given tile, 𝜙 and 𝜙2 will both be zero. 

The third parameter, 𝑈, is detected level for each tile 

which is the dB version of the “Pythagorean” 

magnitude of the two channels. It may be thought of 

as a mono magnitude spectrogram. Various scalings 

of 𝑈  may also be used, for example: 

𝑈power = |𝑋1|
2 + |𝑋2|

2.

2.3  Subbands and Chunks 

To facilitate mixing parameter detection and other 

operations, the system groups frequency bins 𝜔 

within quasi-octave subbands with band edges of 0, 

400, 800, 1600, 3200, 6400, 13200, and 24000 Hz. 

For dialog extraction, the system will typically not 

process the highest subband.  We denote the subband 

index 𝑏. 

For mixing parameter detection, the system will also 

use chunks which are overlapping groups of 

consecutive frames.  We use chunks of 10 frames (1 

current, 4 lookahead, 5 lookback, a total buffer of 

about 277ms) with a chunk hop size (stride) of 5 

frames.  These chunk parameters can be modified per 

application; they balance parameter estimation 

stability, computation, responsiveness and latency. 

2.4  Example Distributions and Filter 

To develop an intuition for the SLF features, we 

briefly describe examples of 𝑈power  weighted 2-D

distributions on 𝜃  and 𝜙  within subbands and 

chunks, which can be estimated via histograms. 

- For a typical center-panned dialog source over

quiet, diffuse backgrounds, there is a spike at
(𝜃, 𝜙) = (𝜋/4, 0 ), and quasi-flat lower values

elsewhere.

- For a reverberant central dialog source, there is a

less sharp peak also at (𝜃, 𝜙) = (𝜋/4,0).

Fig. 3.  A sampled representation of a Bayesian trained SLF.  The four input variables are depicted as the left-right 

(𝜃) and in-out (|𝜙|) axes of each subplot, and the subplot rows (𝑏) and columns (𝑈). The softmask output value is 

the vertical axis of each subplot. A sampling of 𝑈 subplots is shown to allow reasonable figure width 

, 
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- For a far-left panned source only, there are high

values (uniform distribution) for all 𝜙, at 𝜃 = 0.
For a far right source, the distribution is similar

but at 𝜃 = 𝜋/2.  This is due to a lack of matching

phase information in the opposite channel.

- For diffuse backgrounds only, there is a quasi-

uniform (flat) distribution across (𝜃, 𝜙).

The SLF system is trained to exploit such spatial 

differences found in its training data, as well as joint 

dependencies on level information. 

To make this concept more concrete, we include a 

visualization of an example spatio-level filter trained 

to extract a center-panned source in the presence of 

moderately diffuse backgrounds, in Fig. 3.  The filter 

outputs softmask values 𝑚 between 0 and 1 which 

aim to exactly match the fraction of input energy 

belonging to the center-panned source: higher values 

mean the filter predicted more input energy belongs 

to the target. The filter takes a four-dimensional input 

for each 𝜔  and 𝑡 , consisting of the corresponding 
(𝜃, 𝜙, 𝑈, 𝑏) values. (Note that the subband parameter 

𝑏  is a trivial lookup of the subband to which 𝜔 

belongs.) The figure shows the inputs and outputs on 

a single plot. Consider an example input tile which 

exists in frequency subband 4, at a 𝑈 level of -61 dB, 

where 𝜃 is 𝜋/4 and 𝜙 is 0.  (This corresponds to the 

middle of the back wall on the 6th horizontal and 4th 

vertical subplot.)  It can be seen that about 80% of the 

input energy would be passed to the output. The 

trends seen in the plot are a function of the Bayesian 

training process.  The training applied here follows 

the steps described in [5], but with the background 

model specified per the parameters in Eq. (5).  For 

stability, and to balance artifacts and interferers, a 25th 

percentile of each distribution is used rather than an 

expected median value or most likely median.  The 

filter may be trained and implemented via any variety 

of means, provided that the inputs and outputs are as 

specified. 

3 Spatial Parameter Investigation 

The system described below was built to exploit 

information found from investigations of typical 

examples of stereo television and movie content 

which contained dialog.   We summarize three key 

findings.  First, spatial concentration of energy within 

chunks and subbands correlates with intelligible 

dialog sources, even if those concentrations are not 

centered around 𝜙 = 0.  Next, detecting 𝜙 

concentrations within quasi-octave subbands can be 

sufficient for identifying and extracting sources 

mixed with delay, even without explicitly estimating 

delay.  This greatly simplifies delay-mixed source 

extraction, because it is considerably less challenging 

to detect interchannel phase difference ( 𝜙 ) 

concentrations than it is to reliably estimate 

interchannel delay.  Third, for typical dialog 

extraction from entertainment content, it is effective 

and efficient to extract one source per frequency 

subband per unit time, and model subband sources as 

belonging to the same target source.  Tracking more 

sources than this led to little perceptual benefit while 

substantially increasing complexity. 

4 System Operation 

The SLF system exists within the context of STFT 

domain softmask source separation systems (see e.g. 

[5])  which include four basic steps: (1) Apply STFT 

to each channel. (2)  Detect the existence and mixing 

parameter(s) of target source(s). (3) Use the mixing 

parameters to extract estimated sources.  (4) Invert the 

STFT domain representations to obtain stereo time 

domain estimate(s) of the target source(s). In 

subsections below, we describe how the SLF system 

performs each step.  Step 2 includes a spatially 

identifiable subband source detector (SISSD) which 

estimates target sources’ mixing parameters, even if 

Figure 4: SLF System Operation 

SLF

𝑥
STFT

Feature 

Calculation

Estimated Source Extraction:

Adapt (𝜃, 𝜙, 𝑈),
Apply Filter,

Perceptually Optimize.

SISSD

ISTFT

𝑋 (𝜃, 𝜙, 𝑈)

S&S

�̂�
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they do not correspond to a panned source.  These 

parameters are used to adapt data such that, in step 3, 

an SLF built to extract center-panned sources can be 

used for arbitrary spatially identifiable sources.  Step 

3 differs from magnitude-only softmask systems, 

because it adds phase and panning optimization, 

which aim to perceptually improve results. Figure 4 

is a flow diagram of the steps in this section. 

4.1  STFT Front End and Feature Calculation 

For the STFT front end, we assume, or convert inputs 

to have, a 48 kHz sample rate, and use 4096 sample 

frames with a square root of Hann window, hopped at 

1024 samples (75% overlap). The corresponding 85.3 

ms window length falls within the optimal range for 

monoresolution STFT speech separation systems as 

found by various methods (see e.g. [9, 10]).  The 75% 

overlap represents a tradeoff between the minimum 

of 50% needed for perfect reconstruction and 

arbitrarily larger perfect reconstruction values which 

asymptotically improve quality [11] while 

exponentially increasing computation.   

The system calculates (𝜃, 𝜙, 𝑈) for each (𝜔, 𝑡) tile, 

and if necessary, adjusts 𝑈 to match the level of the 

training data using a long term LKFS measurement 

[12]. 

4.2  SISSD 

The system next detects one spatially identifiable 

source per chunk per subband and characterizes it 

through “shift and squeeze” parameters. 

For each chunk and subband within it, the system 

creates a 𝑈power weighted 51-bin histogram on 𝜃. It

does the same for 𝜙 and 𝜙2 but with 102 bins.  The 

histograms are each smoothed over their given 

dimensions and vs chunks.  For the smoothed 𝜃 

histograms, the system detects the theta value of the 

highest peak, which we call thetaMiddle, and also the 

width around this peak necessary to capture 40% of 

energy in the histogram, which we call thetaWidth.  It 

does the same for 𝜙  and 𝜙2, recording phiMiddle, 

phi2Middle, phiWidth and phi2Width, but requiring 

80% energy capture for widths.  The system records 

final values for phiMiddle and phiWidth based on 

which had a higher concentration in phi space as 

indicated by a smaller phiWidth value. 

An example 2-D  𝜃 and 𝜙 histogram heat map for one 

chunk and subband is shown in Fig. 5 (though 

parameters are calculated on 1-D histograms on 𝜃 

and 𝜙).  Darker areas represent greater intensity.  The 

width and height of the rectangular box overlaid on 

the histogram corresponds to the detected thetaWidth 

and phiWidth, and the “+” icon corresponds to 

thetaMiddle and phiMiddle. 

The system converts thetaMiddle, thetaWidth and 

phiWidth to per-frame values via first order linear 

interpolation, and phiMiddle to per-frame values by 

zeroth order hold, to avoid rapid phase change when 

different 𝜙 ranges are chosen in different chunks.  We 

term thetaMiddle and thetaWidth the “𝜃  shift and 

squeeze” parameters, and phiMiddle and phiWidth 

the “𝜙 shift and squeeze” parameters.  Collectively 

they are “Shift and Squeeze” or “S&S” parameters. 

Fig. 6 shows the S&S parameters versus chunk and 

subband for a sci-fi movie audio except where the 

dialog is bandlimited “radio voice”; initially mostly-

left-panned dialog, followed by center-panned dialog. 

Observe that for dialog segments and subbands (2 

through 4), phiMiddle, phiWidth, and thetaWidth are 

all near zero, as expected for panned sources, while Fig. 5.  Example 2-D heat map histogram with 

detected S&S parameters. 
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thetaMiddle is initially 0.1𝜋, then 𝜋/4, as expected 

for mostly-left then center-panned sources. For bands 

lacking dialog, we observe greater values of phiWidth 

and thetaWidth and more random values of both 

thetaMiddle and phiMiddle, indicating more 

diffuseness.  For sources with reverberation, 

thetaWidth and phiWidth are both typically larger 

than for panned sources.  For sources mixed with 

delay, various phiMiddle values are typically seen in 

each subband, but theta values are more consistent. 

4.3 Estimated Source Extraction 

For the third stage, the system extracts an estimated 

target source in each subband and frame by using the 

S&S parameters to adapt the (𝜃, 𝜙)  parameters 

before applying a spatio-level filter which takes input 

of (𝜃, 𝜙, 𝑈, 𝑏) for each bin and frame.   Because the 

filter is trained on a center-panned source, the concept 

is to relocate the 𝜃 and 𝜙 data to be centered around 

𝜃 = 𝜋/4 (center) and 𝜙 = 0 (panned).  To do this, 

the system compares the S&S parameters to those for 

the center panned source data on which it was trained.  

If performs shift based on the “Middle” parameters 

and squeeze based on the “Width” parameters. To 

prevent spurious emphasis of spatially 

unconcentrated sources, there is a limit of 1.5x on the 

squeeze adaptations. (This is relaxed for single-

channel extreme panned sources which lack 𝜙 

concentration.)  Adaptation occurs within each frame 

and subband, since this is the granularity of the S&S 

parameters. 

This technique drastically reduces the amount of 

memory and computation needed for source 

extraction, because the system can use a single trained 

filter to extract a quasi-infinite number of spatially 

identifiable sources, rather than requiring a quasi-

infinite number of trained filters.  Fig. 7 is a stylized 

depiction of S&S parameters modifying example 

spatial characteristics of the input.  

Fig. 6. Example S&S parameters vs chunk and 

subband. 
Fig. 7. Conceptual illustration of S&S. 

𝜙
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𝜋
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4.3.1 Perceptual Optimizations 

Instead of using the basic target source estimate 

described just above, the SLF system next optimizes 

phase, panning, and mask level for perceptual benefit. 

The STFT domain target source estimate obtained 

thus far uses trivial phase information copied from the 

input mix, a solution known to be suboptimal.  It has 

been shown that even a rough estimate of phase can 

substantially improve source separation quality [13] 

or alter the perception of the volume level of a target 

source [5].  Presently, most estimated extracted 

sources are expected to be panned, which means that 

𝜙 should be zero for all phase values; yet this will not 

universally apply to the source estimate when using 

input phase. The SLF system remedies this by 

requiring output 𝜙 to be zero. (Although this does not 

always match phiMiddle for delayed and reverberant 

sources, no negative effects were observed from this 

requirement, which effectively models estimated 

source phase as coming from a panned source.)  To 

achieve this, the system performs phase optimization 

by applying a weighted average of the left and right 

channel phase to each channel.   

A similar concept applies to the output 𝜃 values: if the 

system applies the same magnitude softmask to both 

channels, the resulting detected panning value will 

not always be thetaMiddle, the detected 

concentration.  The system applies panning 

optimization by multiplying each left channel 

softmask value by cos(thetaMiddle) and each right 

channel value by sin(thetaMiddle), which results in 

source estimates whose 𝜃  values equal thetaMiddle 

for their frame and subband. 

The effect of panning and phase optimization is that 

they allow sufficiently loud target source estimates to 

spatially mask interference, which has led listeners to 

describe resulting target source audio as “louder” or 

“clearer.” Automated metrics will not necessarily 

reflect these benefits. 

The magnitude mask levels themselves can also be 

perceptually optimized before smoothing.  The 

Bayesian SLF filter used was trained to produce a 

solution which balances low interference and low 

artifacts in a target source estimate.  However, for the 

DE case, SLF target source estimate will be added to 

the original mix which tends to mask artifacts.  To 

shift this balance even after the filter has been trained, 

the system performs bulk reduction, in which 

softmask values below an interference-correlated 

balance point are reduced by a multiplicative scale 

factor.  Here we chose a balance point of 0.51 and a 

scale factor of 0.33.  These values should be 

optimized in accordance with the application and 

expected boost level range. 

4.4  Invert STFT Representation 

Finally, an inverse STFT with the same synthesis 

window as analysis window, is performed on each 

channel representation. 

5 Classification, Gating and Latency 

Above, we described how the SLF system outputs a 

candidate dialog signal which shall be gated based on 

a dialog classifier.  We describe two options for 

classifier audio input as shown with dashed lines in 

the system diagram (Figure 2).  First, the estimated 

SLF target source signal can be input to the classifier. 

This could lead to more accurate classification but 

requires the classifier to wait for SLF system output, 

which increases latency.  A second option is to input 

the original mix directly to the classifier; latency is 

then the greater of SLF and classification latencies, 

rather than their sum.  The present SLF system was 

designed for low-latency applications and uses the 

second option.  

The SLF system has algorithmic latency of 470 ms 

resulting from use of (and smoothing across future) 

frames and chunks.  If we allow for moderate or high 

Fig. 8. Sample-level classification (solid) and gating 

function with causal transitions (dashed). Figure is for 

illustrative purposes; axes not to scale. 

1 (0 dB)

0

Transition 
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Transition 
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risk to audio quality, different sets of lookahead 

choices lead to 320 and 85 ms algorithmic latency, 

respectively.  The classifier used has an algorithmic 

latency of approximately 700 ms.  In applications 

where video and audio are delivered together, it may 

be costly or impossible for audio processing to 

require substantial delay from the video processing 

components. Additional latency is currently of little 

benefit to SLF because it exploits training 

information on a very short timescale. 

The classifier itself uses features described in [14, 15] 

as inputs to a deep neural network, which is trained to 

output a confidence level between 0 and 1 per 

classifier frame, each 1024 samples in hop size. 

Choosing a trigger level of 0.45 leads to the lowest 

overall error rate (2.3% each for false negatives and 

positives).  However, the target source candidates 

output by the SLF system are more robust to false 

positives than negatives (SLF tends to attenuate non-

dialog) which leads us to choose a trigger level of 0.1, 

for a higher false positive rate of 7.0% and low false 

negative rate of 0.6%. Triggering frames are labeled 

1 and non-triggering frames are labeled 0. 

Next, we convert from frame level to sample level 

classification using zero order hold, then add causal 

transition regions which go up from -25 dB to 0 dB 

over 180 ms, and down over 800 ms. See Fig. 8 for 

an example.  This time domain gating function is 

multiplied with the time domain SLF target source 

estimate for each channel to produce the estimated 

dialog signal �̂�. 

6 Evaluation 

6.1 Dialog Boost Quality 

We now seek to evaluate the signal 𝑦 as described in 

Eq. (2), in terms of practical system performance on 

representative examples at representative dialog 

boost levels.  We will assess dialog boost quality or 

DBQ.  To do so, we consider boosted signals 

including backgrounds, not dialog estimate signals, as 

they are not surfaced to the user.  DBQ shall be 

described for a specific boost level in decibels, e.g. "9 

dB DBQ."  Achieving high DBQ is generally 

considered easier than achieving high quality source 

separation or complete noise suppression, because 

artifacts or interference that would be exposed in an 

estimated dialog signal can be masked when that 

signal is added back to the original mix for the boost 

case; this “mix masking” is greatest for low dialog 

boost levels and least for high levels.  Results here 

will evaluate target boost levels of 9 and 15 dB, which 

are greater than or equal to levels commonly chosen 

by human listeners for typical entertainment content 

(see e.g. [2]). 

In DE, the goal is generally to boost dialog without 

boosting backgrounds or introducing artifacts.  One 

way to assess this is to ask listeners to choose their 

preferred DE boost levels for both guided and 

unguided DE in non-simultaneous trials, then 

compare the boost levels chosen [2].  However, such 

a method does not allow for direct comparison of 

ideal dialog boosted and estimated dialog boosted 

signals.  It also requires machine estimation (in this 

case, using the BSS Eval Toolbox [16]) to 

characterize the amount of dialog boost achieved by 

the unguided DE system, but such estimation is itself 

not necessarily perceptually accurate [17]. 

We aim to assess DBQ by having listeners directly 

compare an estimated boosted signal against an ideal 

Characteristic Categories (Abbreviation) 

Speaker 

gender 

presentation 

Male only (M), female only (F), 

both male and female (B). Unless 

noted, dialog is from speakers 

perceived to be adult humans. 

Background 

music 

Large orchestral and or choral 

ensemble (L), small acoustic 

ensemble (A), synth-heavy pop (S), 

none (X). 

Background 

effects 

Crowd noise (C), race track sounds 

(R), mechanical sounds (M), spatial 

objects (S), ambient nature sounds 

(N), none (X). 

Genre Sports discussion (D), Product Ad 

(P), News documentary (N), Live 

motorsports (M), Live sports (L), 

Other TV / movie (T) 

Table 1: Characteristics of audio items used in 

listening tests, with abbreviations. 
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boosted signal, and by explicit characterization of the 

qualities of the estimated boosted signal.  To this end, 

we conducted two listening tests. We include test 

items with a range of DNRs (dialog-to-nondialog 

ratios), dialog mixing types, and background types; 

which pose a range of difficulty to the SLF+C system; 

and which have not been used for development of 

SLF or classification. 

6.2 MUSHRA Test with Clean Dialog 

For the first of two listening tests, we will require 

audio for which both the original mix and the clean 

dialog are available, which allows comparison with a 

perfectly boosted dialog reference signal. The items 

used for this test are drawn from a random set of audio 

clips recorded from a San Francisco Bay Area cable 

feed of broadcast television in 2018 and 2019.  The 

audio was cached by an automated system which 

received signals after they had been encoded in AAC 

format at various bit rates then decoded.  Using such 

signals simulates end-consumer applications where 

the DE system exists at some post-encode point (e.g. 

mezzanine or emission) in the content delivery chain. 

The audio was originally in 5.1 format; an automated 

system with human verification identified 113 clips 

of various lengths (each 10 to 15s, with no more than 

brief portions lacking backgrounds) where there was 

exclusively dialog in the center channel and 

exclusively non-dialog in the other channels.  To 

create a clean dialog signal, the center channel was 

upmixed to stereo; to obtain a clean background 

signal, the non-center channels were downmixed to 

stereo.  To generate a 9 dB perfect boost version, the 

clean dialog was added back to the mix with a gain of 

10^(9/20)-1. 

MUSHRA data set.  Of the 113 clips in the original 

data set, 15 items were quasi-randomly selected to 

allow representation of various genres, background 

types, DNRs and speakers' gender presentation. For 

four of the clips (from genres represented by more 

than one clip each), the dialog mixing was modified 

to use a quasi-random non-center panning coefficient. 

This tests versatility of the DE system because typical 

content includes non-center-panned dialog.  One 
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Test 13 F X C L 0.5 -0.1 69.5 

Test 14 M X C L 0.5 2.0 67.0 

Test 16 B X C L 0.5 12.8 75.0 

Test 26 M X R M 0.1 14.5 87.0 

Test 27 M X R M 0.5 15.2 78.0 

Test 41 F A X T 0.5 5.5 84.0 

Test 43 M S X P 0.2 2.8 79.5 

Test 52 M L X D 0.5 13.0 68.5 

Test 53 F X N N 0.4 7.3 81.5 

Test 54 F X C N 0.5 4.6 89.0 

Test 55 M L X P 0.5 3.3 72.0 

Test 66 F S X P 0.4 7.2 89.0 

Test 83 B L C D 0.5 5.3 67.5 

Test 102 B X M L 0.5 -1.4 48.0 

Test 107 F L X T 0.5 1.1 72.0 

Table 2.  Characteristics of MUSHRA test items. Fig. 9.  MUSHRA test results. 
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pathologically mixed item (Test 102) was 

deliberately chosen due to complete spatial overlap of 

loud backgrounds with most of the dialog.  A list of 

abbreviations is shown in Table 1, and characteristics 

of the items for the MUSHRA test are shown in Table 

2, along with summary results from human listening 

described below. 

MUSHRA tests evaluate how well a system under test 

produces audio which matches a reference.  We 

performed a MUSHRA test following the ITU-R 

BS.1534-3 specification [18], using eight expert 

listeners and the MUSHRA test content items 

described above. The references were the "ideal" or 

"perfect" 9 dB dialog-boosted signals, and the system 

under test was the SLF+C system at 9 dB boost.  In 

addition to the two standard anchors (reference 

signals lowpass filtered at 3500 and 7000 Hz), we 

also included the original mixes (with no dialog 

boost) and a 4.7 dB perfect dialog-boosted 

signal.  The latter was motivated by the automated 

SIR metric (from [19], an update to [16]) which found 

that the median dialog-to-background ratio increase 

achieved by the SLF+C system was 4.7 dB. (The 

same metric found the perfect system's increase was 

9.0 dB as expected.) 

Results are shown in Fig. 9.  Some SLF+C items 

performed very well (all three erroneous scores of 

100 were from different subjects and for the SLF+C 

system), and overall the system performed similarly 

to the 4.7 dB perfect boost system. Performance was 

generally better on higher DNR items but did not vary 

substantially over other characteristics. Item “Test 

102” performed poorly, as expected. See the 

Conclusion section for further comments. 

6.3 Comparison Ratings Test: Mix Only 

Using test content for which only the mix is available 

allows evaluation of arbitrary authentic mixes of 

interest, even if clean dialog tracks are 

unavailable.  Items of 10-15 sec duration from 

various sources were selected to allow or increase 

No. Name 

G
en

d
er

 

M
u

si
c 

E
ff

ec
ts

 

G
en

re
 

Dialog Mixing Approx. DNR 

1 Antiques F A X T Moderately reverberant Moderate-high 

2 MiniseriesDrama B A C T Reverberant, panned Low-moderate 

3 SoccerBkgDlg M X C L Non-center-panned Moderate 

4 MovieDemo5* F L X T Highly reverberant Moderate 

5 AutoRacing1 M X M,R M Center-panned Very low 

6 FamilyDrama B A X T Various Moderate 

7 CrimeDrama B A S T Various panning Moderate 

8 ImmersiveTrailer*** M L M,S T Various panning Low 

9 SciFiHorrorMovie B S,L X T Highly reverberant, panned Moderate 

10 SoccerGoal M X C L Center-panned Moderate, low 

11 SciFiDramaMovie M X M T Moderately reverberant Moderate 

12 WesternMovie** B A N T Various panning Low-moderate 

Dialog from: *mystical witch character, **boy and girl characters, ***boy and man characters. 

Table 3.  Characteristics of mix-only content items. 
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representation of reverberant dialog mixing, speaking 

character types, the scripted TV / movie genre, and 

spatial object backgrounds.  Items and characteristics 

are shown in Table 3.  We used these items to assess 

how well the SLF+C system achieved boost and 

artifact goals for two boost levels of 9 and 15 dB.  We 

employed a forced-choice comparison test which 

presents a listener with a randomly ordered pair of 

items, any two of: (1) unboosted (0 dB) mix signal 

(2) SLF+C system with 9 dB dialog boost (3) SLF+C

1
The COVID pandemic interfered with typical procedure 

for obtaining a larger number of listeners. 

with 15 dB dialog boost.  The listener is asked: 

“Given the goals of (1) significantly louder dialog 

than background (2) minimal artifacts / distortions, 

which item do you prefer overall?  By how much?” 

The listener specifies item A or B, and a numeric 

strength rating (minimum increments of tenths of a 

point) from: (1) not at all (2) slightly (3) moderately 

(4) very much (5) extremely. We ran seven subjects,

all expert listeners with normal hearing.1

To plot results in a compact fashion, we normalized 

and combined ratings for each system pair by 

subtracting 1 from all strength scores, and making the 

values negative for the first system under test, and 

positive for the second.  For example, in the 0 vs 9 dB 

comparison, an individual data point preference value 

of +2 indicates “moderately” preferring the 9 dB 

boosted signal, and -1 indicates “slightly” preferring 

the 0 dB signal.  Results are shown in Fig. 10 for 0 vs 

9 dB, 0 vs 15 dB and 9 vs 15 dB SLF+C boost. The 

mean and the 95% confidence interval are shown with 

horizontal marks on a vertical bar for each item and 

over all items.  Medians are shown as blue diamonds, 

and individual data points per item are shown as small 

open circles.  We see that the 9 dB boosted signal was 

preferred over no boost in almost all cases, while 

results were mixed for the other two comparisons. 

For those comparisons, additional data collected 

during testing showed that preferences were not 

strongly correlated with the perceived relative dialog 

level or artifacts in the tested signals (data not 

shown).  Listener comments and informal follow-up 

testing suggested preferences were often based on the 

perceived need (or lack of need) for dialog boost, 

rather than quality of dialog boost; there was also 

aversion to excessive overall volume for the 15 dB 

boosted signals.  Future tests will update procedures 

(see below) to yield better insights into DBQ at high 

boost levels. 

6.4 Discussion 

Above, we presented data from human listening tests. 

Updated or reinterpreted versions of automated 

Fig. 10.  Comparison test results. 
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source separation metrics also show some potential 

which we intend to pursue in future work. 

We could also improve the listening tests.  The 

MUSHRA evaluation could be updated to allow 

forgiveness for mutual changes in dialog and 

background levels (which may be immaterial and 

mitigated in practice by volume control) by doing a 

separate pre-exercise which matches a tested item’s 

dialog or background level to that of the reference.  A 

similar exercise (for MUSHRA and comparison test 

items) could measure boosted signal dialog and 

background levels to estimate perceived final DNR 

achieved.  This could be used to judge the system (e.g. 

“fell 2 dB short of boost target”) or adapt its output to 

attempt greater boost at the risk of more artifacts, 

which could be separately evaluated.  Dynamic range 

issues in testing could be mitigated by allowing a 

combination of background ducking and dialog boost 

rather than using boost-only DE. 

The SLF system exploits typical differences between 

dialog and backgrounds with regards to their spatial 

characteristics, though we did not spatially 

characterize backgrounds in the evaluation here; 

future evaluation could do so via a combination of 

machine and human methods. More generally, for 

more stringent future testing, we should incorporate 

ITU-R BS.1116 listening tests, evaluate items with 

higher levels of dialog boost, or both. 

7 Conclusion and Future Work 

Above, we described the SLF system, including the 

SLF model, spatial motivation, system operation, and 

combination with classification.  We described and 

conducted evaluation which indicated favorable 

performance.  We observed that the system requires 

little lookahead, memory, computation and training 

data, which makes it suitable for various DE 

applications.  We now consider areas for future work. 

The SLF+C system described here is designed to 

accept stereo content as input.  The system has been 

repurposed to accept input of Left, Center and Right 

channels in 5.1 or higher channel count content, 

where dialog is commonly mixed; this will be 

described in a future publication.  (For object-based 

audio with objects of unknown content, the source 

separation problem is substantially different, 

becoming one primarily of dialog detection within 

objects.)  For cases with mono input, the SLF system 

can accept a stereo input formed from duplicates of 

the mono channel, though this leads to trivial 𝜃 and 𝜙 

data; performance decreases as the system must act 

only based on 𝑈.   

Generally, inputs with trivial (e.g. constant scalar) 

data for 𝜃 and 𝜙, are challenging, as are cases where 

backgrounds are mixed identically to time-coincident 

dialog.  In such cases, pairing SLF+C with a 

technology built to extract mono dialog has shown 

promise; this technique is also effective if SLF+C 

performs moderately well.  When SLF is strained by 

spatially concentrated backgrounds, applying 

classification to each of the SLF output and residual 

could mitigate; we will explore this.  Currently the 

data in S&S parameters is not exploited except for 

extraction, although it may indicate spatially 

concentrated interferers, multiple target sources, or 

strain.  Work is ongoing to exploit S&S data, and to 

update its interpretation when the target signal is not 

dialog, e.g. for music-only applications. 

We noted above that the adaptive S&S extraction 

approach allows extraction of a quasi-infinite number 

of spatially identifiable sources from a single trained 

filter.  However, this does not guarantee that the 

extraction quality will match what individually 

trained filters would have achieved, as the adaptation 

is based on limited training data.  Such training could 

be significantly expanded.  The 1.5x squeeze limit 

could be made to vary based on other detected 

features.  We look forward to pursuing all the above 

ideas. 
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