
Audio Engineering Society

Conference Paper 9846
Presented at the 143rd Conference on

Convention
2017 October 18–21, New York, NY, USA

This conference paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at 
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This conference paper has been 
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The 
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights 
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the 
Audio Engineering Society.

Improving Neural Net Autoencoders for Music Synthesis
Joseph Colonel1, Christopher Curro1, and Sam Keene1

1The Cooper Union for the Advancement of Science and Art

Correspondence should be addressed to Joseph Colonel (colone@cooper.edu)

ABSTRACT

We present a novel architecture for a synthesizer based on an autoencoder that compresses and reconstructs magni-
tude short time Fourier transform frames. This architecture outperforms previous topologies by using improved
regularization, employing several activation functions, creating a focused training corpus, and implementing the
Adam learning method. By multiplying gains to the hidden layer, users can alter the autoencoder’s output, which
opens up a palette of sounds unavailable to additive/subtractive synthesizers. Furthermore, our architecture can be
quickly re-trained on any sound domain, making it flexible for music synthesis applications. Samples of the autoen-
coder’s outputs can be found at http://soundcloud.com/ann_synth, and the code used to generate and
train the autoencoder is open source, hosted at http://github.com/JTColonel/ann_synth.

Introduction

Recent developments in the field of artificial neural
networks have opened the door for a wide variety of
creative uses. While much research has been done in
the field of computer vision and generative networks,
advancements have also been made in the field of music
and audio. Google’s WaveNet architecture generates
a piano composition one sample at a time that sounds
as if a trained pianist is playing [1]. The University
of Montreal MILA lab’s work with Lyrebird has pro-
duced a neural network which can generate speech that
mimics a human’s voice with only one minute of train-
ing audio [2]. Another of Google’s architectures, the
NSynth, uses instrument classes to generate specific
timbres and can create sounds that interpolate between
classes [3].

Another example is an autoencoding neural network
(autoencoder) architecture for use in musical synthesis,
proposed by Andy Sarroff [4]. Compared to the work
of [1], [2], and [3], this architecture has the advantage
of being easy to train, tune, and alter by new users.
Furthermore, this lightweight architecture allows for
real time tuning, audio generation, and performance.

In [4]’s implementation, the autoencoder’s encoder
compresses an input magnitude short time Fourier trans-
form (STFT) frame to a latent representation, and its
decoder uses the latent representation to reconstruct
the original input. By modifying the latent representa-
tion of the input, the decoder generates a new magni-
tude STFT frame. However, [4]’s proposed architec-
ture suffers from poor performance, measured by mean
squared error (MSE) of a given input magnitude STFT

http://soundcloud.com/ann_synth
http://github.com/JTColonel/ann_synth


Colonel, Curro, and Keene Autoencoder Synthesizer

frame and its reconstruction. Thus the autoencoder has
a poor range of musical applications.

Our work builds on [4]’s initial results and improves
the designed autoencoder through modern techniques
and frameworks. These improvements reduce MSE
for each of [4]’s proposed topologies, thus widening
the scope of the autoencoder’s musical applications.
We present comparisons of our topology’s performance
and [4]’s, and also develop an expansion of useable
topologies. Furthermore we outline our design process
and choices in the hopes of laying a sound foundation
for further work.

Methods

Autoencoders

An autoencoder is comprised of an encoder and a de-
coder [5]. The encoder shrinks the dimension of an
input into a latent space using a discrete number of val-
ues, or "neurons." We may conceive this latent space as
the hidden layer (HL) representing high level, descrip-
tive features of the input. The decoder then expands
the dimension of the latent space to that of the input in
a manner that reconstructs the original input. In this
work, the encoder maps an input vector x∈ [0,1]d to the
hidden layer y∈ [0,1]e, where d > e. Then, the decoder
maps y to x̂ ∈ [0,1]d . In its traditional formulation, the
encoder maps x→ y via

y = s(Wx+b) (1)

where W ∈ R(e×d), b ∈ Re, and s(·) is an activation
function that imposes a non-linearity in the neural net.
The decoder has a similar formulation:

x̂ = s(W ′y+bout) (2)

with W ′ ∈ R(d×e), bout ∈ Rd .

The autoencoder trains the weights of the W ’s and b’s
in the nets to minimize some cost function. The cost
function used in this work is mean squared error (MSE):

C(θn) =
1
d

d

∑
k=1

(x̂− x)2 (3)

where θn is the autoencoder’s trainable weight vari-
ables.

The process of choosing activation functions s(·) and
cost functions relies heavily on the domain of a given
task.

Autoencoding Learning Task Description

The autoencoding neural network used here takes 1025
points from a 2048 point magnitude Fourier frequency
transform as its input, i.e. x ∈ [0,1]1025. These 1025
points represent the DC and positive frequency values
of a given frame’s STFT. All audio processing was
handled by the LIBROSA Python library [6]. In this ap-
plication, LIBROSA was used to create Python arrays
from .wav files sampled at 22.05kHz, perform STFTs
of length 2048 with centered Hanning window, hop
length 0, and reconstruct .wav files with sampling fre-
quency 22.05kHz from reconstructed magnitude STFT
frames. The phase of each magnitude STFT frame was
passed directly from input to output, circumventing the
autoencoder.

The neural network framework was handled using Ten-
sorFlow [7]. All training used the Adam method for
stochastic gradient descent with mini-batch size of
100 [8]. Learning rates used for training varied from
10−3 and 10−4 between runs. This is a departure from
[4]’s proposed architecture, which used the momentum
method of stochastic gradient descent with learning
rate 5×10−3 and momentum 0.5 [9].

All topologies were trained using 70,000 magnitude
Fourier frequency transform frames, with 10,000
frames held out for testing and another 10,000 for vali-
dation. All audio was generated using a MicroKORG
synthesizer/vocoder. By restricting the corpus to pieces
generated from a MicroKORG, the autoencoder need
only learn higher level features of audio made of har-
monic synthesizer content, rather than that of voice
or percussion. The MicroKORG has a maximum of
four note polyphony for a given patch, thus the autoen-
coder must learn to encode and decode mixtures of at
most four complex harmonic tones. These tones often
have time variant timbres and effects, such as echo and
overdrive.

The encoder and decoder are then trained on these mag-
nitude STFT frames to minimize the MSE of the origi-
nal and reconstructed magnitude STFT frames. Several
different network topologies were used, varying the
depth of the autoencoder, width of HLs, and choice of
activation function. We first recreated [4]’s topology
using the Adam training method, and then proceeded to
design a four layer deep autoencoder that can be used
for unique audio effect generation and audio synthesis.
For both the one and two layer models, no additive bias

AES 143rd Conference on Convention, New York, NY, USA, 2017 October 18–21
Page 2 of 6



Colonel, Curro, and Keene Autoencoder Synthesizer

Table 1: Depth 1 Topology MSEs

HL Depth Momentum Adam

8 4.40×10−2 5.30×10−3

16 4.14×10−2 5.28×10−3

64 2.76×10−2 7.10×10−4

256 1.87×10−2 1.64×10−4

512 1.98×10−2 9.62×10−4

1024 3.52×10−2 7.13×10−5

Table 2: Depth 2 Topology MSEs

HL Depths Momentum MSE Adam MSE

256-8 1.84×10−2 1.91×10−3

256-16 1.84×10−2 1.19×10−3

256-32 1.84×10−2 7.30×10−4

term b was used, and all activations were the sigmoid
(or logistic) function:

S(x) =
1

1+ e−x (4)

A more in depth look at the neural network design
choices we made is in the Discussion section.

Optimization Method Improvements

Table 1 and Table 2 show the MSEs of the network
topologies outlined by [4]. The first column of Table
2 describes the autoencoder’s topology, with the first
integer representing the neuron width of the first layer,
and the second integer representing the neuron width
of the second layer. Table 3 shows the MSEs of a 4
layer deep autoencoder, with encoder HL depths 512→
256→ 128→ 64. Table 3 also shows the MSEs of
three different topologies that were chosen for the 4
layer deep autoencoder: one with sigmoid activations
throughout, one with ReLU activations throughout, and
a hybrid model. This model used a sigmoid on the
innermost HL and on the output layer, with all other
layers using a ReLU activation. This hybrid topology
performed best.

Figure 1 shows graphs of an input magnitude FFT
frame (top) and corresponding reconstructed magni-
tude FFT (bottom), with magnitude on the y axis and
frequency bin on the x axis. Contrary to [4]’s work,

Table 3: Deep Topology MSEs and Train Times

Activations MSE Time to Train

All Sigmoid 1.72×10−3 20 minutes
All ReLU 8.00×10−2 60 minutes

Hybrid 4.91×10−4 25 minutes

the signal reconstruction improves both qualitatively
and quantitatively as the depth of the hidden layer is
increased.

Discussion

There are several distinctions between the architecture
originally proposed by [4] and the architectures used
in this work: the choice of the autoencoder’s stochastic
training method, the regularization techniques used to
create a robust latent space, the activation functions
chosen, the use of additive bias terms b, and the corpus
used for training.

Training Methods

The improved MSEs in Table 1 and Table 2 demonstrate
the ability of the Adam method to train autoencoders
in this context better than the momentum method [4]
proposed. The momentum method produced MSEs
orders of magnitude higher than Adam, suggesting that
the method found a poor local minimum and did not
explore further. The result of the 8-neuron hidden layer
in Figure 1 demonstrates the poor reconstructions pro-
duced by an autoencoder with MSE on the order of
10−3. [4]’s performance suggests that the momentum
method produced similar results. While these recon-
structions are interesting to listen to, they do not ac-
curately reconstruct an input magnitude STFT frame.
The adaptive properties of the Adam technique ensure
that the autoencoder searches the weight space in order
to find robust minima.

Regularization

[4] suggested using denoising techniques to improve
the robustness of autoencoder topologies. We found
that denoising was not necessary to create robust one
and two layer deep autoencoders. However, we did
encounter issues when training the four layer deep au-
toencoder topology. Our original topology used sig-
moids as activations throughout. The autoencoder did

AES 143rd Conference on Convention, New York, NY, USA, 2017 October 18–21
Page 3 of 6



Colonel, Curro, and Keene Autoencoder Synthesizer

Fig. 1: The topmost plot shows the magnitude spec-
trum of the original signal, while the remaining
show the reconstructed magnitude spectra for
various sized hidden layers.

0 256 512 768 1024
Frequency Bin

0.0

0.5

1.0
Magnitude Original Signal

0 256 512 768 1024
Frequency Bin

0.0

0.5

1.0
Magnitude Reconstruction with 8 Neurons

0 256 512 768 1024
Frequency Bin

0.0

0.5

1.0
Magnitude Reconstruction with 64 Neurons

0 256 512 768 1024
Frequency Bin

0.0

0.5

1.0
Magnitude Reconstruction with 1024 Neurons

not converge, however, potentially due to the vanishing
gradient problem inherent to deep training [10]. To fix
this we used sigmoid activations on only the hidden and
output layers, and used rectified linear units (ReLUs)
for the rest of the layers [11]. The ReLU is formulated
as

S(x) =
{

0 x < 0
x x≥ 0 (5)

This has the benefit of having a gradient of either 0 or
1, thus avoiding the vanishing gradient problem.

We explored two regularization techniques: dropout
and an l2 penalty [12] [13]. Dropout involves multiply-
ing a Bernoulli random vector z ∈ {0,1}ti to each layer
in the autoencoder, with ti equal the dimension of the
ith layer. Dropout encourages robustness in an autoen-
coder’s encoder and decoder, and the autoencoder’s
quantitative performance did reflect this. However, the
dropout regularizer hampered the expressiveness of the
autoencoder by ignoring slight changes to the latent
space.

The second technique, l2 regularization, proved to per-
form the best in qualitative listening comparisons. This
technique imposes the following addition to the cost
function:

C(θn) =
1
d

d

∑
k=1

(x̂− x)2 +λl2‖θn‖2 (6)

where λl2 is a tuneable hyperparameter and ‖θn‖2 is
the Euclidean norm of the autoencoder’s weights. This
normalization technique encourages the autoencoder
to use smaller weights in training, which we found to
improve convergence.

Activation Functions

The choice of sigmoid activation for the hidden layer
was motivated by the use of multiplicative gains for
audio modulation. Because the range of the sigmoid is
strictly greater than 0, multiplicative gains were guar-
anteed to have an effect on the latent representation,
whereas a ReLU activation may be 0, thus invalidating
multiplicative gain.

The choice of sigmoid activation for the output layer
was twofold. First, a magnitude STFT frame has a min
of 0 and max of 1, which neatly maps to the range
of the sigmoid function. Second, experiments demon-
strated that while the ReLU activation on the output

AES 143rd Conference on Convention, New York, NY, USA, 2017 October 18–21
Page 4 of 6



Colonel, Curro, and Keene Autoencoder Synthesizer

would produce acceptable MSEs, the sound of the re-
constructed signal was often tinny. The properties of
the sigmoid activation lend themselves to fuller sound-
ing reconstructions.

Additive Bias

Finally, we found that using additive bias terms b cre-
ated a noise floor within the autoencoder. When present,
using gain constants in the hidden layer produced noisy
results. Though additive bias terms did improve the
convergence of the four layer deep autoencoder, we
ultimately chose to leave them out in the interest of
musical applications.

Corpus

An issue with [4] is the use of several genres of music
to generate a dataset. As different genres have different
frequency profiles, the net’s performance drops. For
example, a rock song’s frequency profile can be bro-
ken down as the sum of spiky low frequency content
created by drums, tonal components from guitar and
bass, complex vocal profiles, and high frequency activ-
ity from cymbals. Including several genres of music
in a corpus trains an autoencoder to be a jack of all
trades, but master of none. By focusing the corpus of
our exercise on tonal sounds, we encourage the net to
master representations of those sounds. Thus when it
comes time for modifying an input, the latent space con-
tains representations of similar yet distinct synthesizer
frequency profiles.

Summary

We present an improved method of creating lightweight,
easily trainable, deep autoencoders that can be used as
a synthesizer and audio effect. Ultimately a 4 layer
deep topology was chosen, using both sigmoid and
ReLU activations and eschewing the traditional additve
bias term between layers. The authors have uploaded
audio samples produced from the final autoencoder at
soundcloud.com/ann_synth , and the code used to gen-
erate and train the autoencoder is open source, hosted
at github.com/JTColonel/ann_synth.

References

[1] A. van den Oord, S. Dieleman, H. Zen,
K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model
for raw audio,” CoRR, vol. abs/1609.03499, 2016.
[Online]. Available:
http://arxiv.org/abs/1609.03499

[2] “Lyrebird, an api for speech synthesis,”
https://lyrebird.ai/, 2017.

[3] J. Engel, C. Resnick, A. Roberts, S. Dieleman,
D. Eck, K. Simonyan, and M. Norouzi, “Neural
Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ArXiv e-prints, Apr. 2017.

[4] A. Sarroff, “Musical audio synthesis using
autoencoding neural nets,” Dec 2015. [Online].
Available: http://www.cs.dartmouth.edu/
~sarroff/projects/autoencoding-synthesizers/

[5] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,
and P.-A. Manzagol, “Stacked denoising
autoencoders: Learning useful representations in
a deep network with a local denoising criterion,”
Journal of Machine Learning Research, vol. 11,
no. Dec, pp. 3371–3408, 2010.

[6] B. McFee, C. Raffel, D. Liang, D. P. Ellis,
M. McVicar, E. Battenberg, and O. Nieto,
“librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in
science conference, 2015, pp. 18–25.

[7] M. Abadi, “Tensorflow: Learning functions at
scale,” ICFP, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976746

[8] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton,
“On the importance of initialization and
momentum in deep learning,” in Proceedings of
the 30th International Conference on Machine
Learning, ser. Proceedings of Machine Learning
Research, S. Dasgupta and D. McAllester, Eds.,
vol. 28. Atlanta, Georgia, USA: PMLR, 17–19
Jun 2013, pp. 1139–1147. [Online]. Available:

AES 143rd Conference on Convention, New York, NY, USA, 2017 October 18–21
Page 5 of 6

github.com/JTColonel/ann_synth
http://arxiv.org/abs/1609.03499
https://lyrebird.ai/
http://www.cs.dartmouth.edu/~sarroff/projects/autoencoding-synthesizers/
http://www.cs.dartmouth.edu/~sarroff/projects/autoencoding-synthesizers/
http://dl.acm.org/citation.cfm?id=2976746
http://arxiv.org/abs/1412.6980


Colonel, Curro, and Keene Autoencoder Synthesizer

http:
//proceedings.mlr.press/v28/sutskever13.html

[10] S. Hochreiter, Y. Bengio, P. Frasconi, and
J. Schmidhuber, “Gradient flow in recurrent nets:
the difficulty of learning long-term
dependencies,” 2001.

[11] V. Nair and G. E. Hinton, “Rectified linear units
improve restricted boltzmann machines,” in
Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp.
807–814.

[12] N. Srivastava, G. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[13] A. Krogh and J. A. Hertz, “A simple weight
decay can improve generalization,” in NIPS,
vol. 4, 1991, pp. 950–957.

AES 143rd Conference on Convention, New York, NY, USA, 2017 October 18–21
Page 6 of 6

http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html

	Introduction
	Methods
	Autoencoders
	Autoencoding Learning Task Description

	Optimization Method Improvements
	Discussion
	Training Methods
	Regularization
	Activation Functions
	Additive Bias
	Corpus

	Summary

