AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Synthesising Prosody with Variable Resolution

This paper highlights some of the challenges involved in predicting the spatial reproduction performance of surround sound systems serving large and acoustically live listening areas and highlights the shortcomings of current objective assessment methods. This paper presents a technique for synthesising prosody based upon information extracted from spoken utterances. We are interested in designing systems that learn how to speak autonomously, by interacting with humans. Our motivation for an in-depth investigation on prosody is prompted by the fact that infants seem to have acute prosodic listening during the first months of life. We presume that any system aimed at learning some form of speaking skills should display this fundamental capacity. This paper addresses two fundamental components for the development of such systems: prosody listening and prosody production. It begins with a brief introduction to the problem within the context of our research objectives. Then it introduces the system and presents some commented examples. The paper concludes with final remarks and a brief discussion on future developments.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society