Journal Forum

Synthetic Reverberator - January 1960

Sound Board: High-Resolution Audio - October 2015

Synchronized Swept-Sine: Theory, Application, and Implementation - October 2015

Access Journal Forum

AES E-Library

Computer Simulation, Analysis of Predistortion, Adaptive Equalization of Digital Satellite and Digital Microwave Radio Systems with Nonlinear Transmit Amplifiers and with Multipath Propagation

Document Thumbnail

In this paper, we analyze the performance of predistortion and adaptive equalization to compensate for the nonlinearity of satellite and digital radio channels with multipath propagation (Rummler's model) and additive noise. The study is carried out using 8-PSK, 16-PSK, 32-PSK, 16-QAM, 64-QAM, and 256-QAM modulation. In the transmitter and receiver, Butterworth's digital filters were simulated. Included in the analysis are several types of TWTA tubes (having AM/AM and AM/PM characteristic approximations with up to 7th order polynoms) and predistortion circuits. In the receiver, we simulated the following equalizers: a) linear; b) fractionally spaced; c) decision feedback; d) nonlinear adaptive, proposed by Falconer (for MQAM); and e) nonlinear adaptive, proposed by Benedetto and Biglieri (for MPSK). The nonlinear theory of Norbert Wiener (i.e., Vito Volterra) and an LMS algorithm for the coefficient tap adjust of the equalizer has been proposed. Our research indicates that the Block update algorithm is better for real-time applications because it reduces the processing complexity of the computation of the equalizer coefficients in each symbol interval. In addition, the required number of coefficients of the equalizer can be reduced from that needed for the original Wiener algorithm.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society