AES E-Library

AES E-Library

Exploring Preference for Multitrack Mixes Using Statistical Analysis of MIR and Textual Features

Document Thumbnail

We investigate listener preference in multitrack music production using the Mix Evaluation Dataset, comprised of 184 mixes across 19 songs. Features are extracted from verses and choruses of stereo mixdowns. Each observation is associated with an average listener preference rating and standard deviation of preference ratings. Principal component analysis is performed to analyze how mixes vary within the feature space. We demonstrate that virtually no correlation is found between the embedded features and either average preference or standard deviation of preference. We instead propose using principal component projections as a semantic embedding space by associating each observation with listener comments from the Mix Evaluation Dataset. Initial results disagree with simple descriptions such as “width” or “loudness” for principal component axes.

Authors:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=20549

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society