AES E-Library

AES E-Library

The Effect of HRTF Individualization and Head-Tracking on Localization and Source Width Perception in VR

Document Thumbnail

In this study the effects of head-tracking and HRTF individualization by subjective selection on localization and width perception of widen-processed sources in VR were investigated. Localization test and the perceived width evaluation were conducted under conditions with or without head-tracking and using individualized or non-individual HRTF. For the perceived width evaluation, monophonic signals were processed by a method proposed in previous studies, which aimed to create spatial extent for sound objects in the binaural synthesis. According to the results, head-tracking not only was effective to improve localization accuracies in localization test, but also could help synthesized source widths to be localized more accurately. No difference in perceived width was found under different conditions.

Authors:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=20378

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society