AES E-Library

AES E-Library

Optimal Control of a High Frequency Class-D Amplifier

Document Thumbnail

During the last decade, switch-mode audio amplifiers have become a common choice for audio applications because of efficiencies approaching 90% and distortions as low as 0.001%. Such amplifiers modulate the input audio into a high-frequency discrete signal that drives a Class-D power stage. The control loop is the key element in achieving high-quality performance. Modern control theory methods were used to design and simulate a full-state feedback integrating controller for use with a high-frequency bridge class-D amplifier. An optimal linear full-state integral controller based on the state-space model was designed using the Linear Quadratic Regulator (LQR) method, and verified on a linear and switching model. Measurements on a Class-D amplifier with the implemented controller showed that the step responses and THD+N measurements were aligned with theoretic predictions. A 30-fold reduction in THD+N was observed compared to open-loop. The results prove that the principals of modern control achieve good performance in Class-D amplifiers, even when the output filter has a large resonance.

Authors:
Affiliation:
JAES Volume 66 Issue 1/2 pp. 34-43; January 2018
Publication Date:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=19374

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

DOI:

Start a discussion about this paper!


AES - Audio Engineering Society