AES E-Library

AES E-Library

Measuring Micro-Dynamics—A First Step: Standardizing PSR, the Peak to Short-Term Loudness Ratio

Document Thumbnail

The “loudness war” still rages, but with major digital streaming services switching to loudness normalization by default, its end is near. Since absolute loudness is no longer effective at making music “stand out,” engineers are finding it much more effective to optimize microdynamics instead. The overall PLR (Peak to Loudness Ratio) of an audio track is widely recognized as a useful metric to assess the overall microdynamics of a section of audio and the likely results of normalization. However, short-term variations are also important, especially when judging the results of compression and limiting on audio quality, and these can be usefully assessed by a real-time property known as PSR (Peak to ShortTerm Loudness Ratio). PSR is found to be straightforward and intuitive to use, and several popular meters are already reporting it. This paper proposes a standardization of the term, to encourage consistency and adoption.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=19324

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society