AES E-Library

AES E-Library

Theory of Constant Directivity Circular-Arc Line Arrays

Document Thumbnail

We develop the theory for a broadband constant-beamwidth transducer (CBT) formed by a continuous circular-arc isophase line source. Appropriate amplitude shading of the source distribution leads to a far-field radiation pattern that is constant above a cutoff frequency determined by the prescribed beam width and arc radius. We derive two shading functions, with cosine and Chebyshev polynomial forms, optimized to minimize this cutoff frequency and thereby extend constant-beamwidth behavior over the widest possible band. We illustrate the theory with simulations of magnitude responses, full-sphere radiation patterns and directivity index, for example designs with both wide- and narrow-beam radiation patterns.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=19233

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society