AES Store

Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Reproduction of the Radiation Pattern from a Practical Source by an Acoustic Array and the Equivalent Source Method

Complicated radiated patterns and strengths from actual source can be approximately described by the expansion of spherical harmonics or, in other words, ideal sources, in various orders. If the signals are superposed to meet the requirement for generating a specially designed radiation pattern of ideal sources in various orders, an arbitrary radiation pattern simulating the actual source of interest can be reproduced by this designed filter. The method based on the equivalent source method is proposed to design a source array to reproduce not only frequency response but also the spatial response to simulate the sound field, and the suggested method is applied to reproduce the radiation pattern of musical instruments with spherically distributed loudspeaker array.

Author:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society