AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Adapting Loudspeaker Array Radiation to the Venue Using Numerical Optimization of FIR Filters

Over the last two decades loudspeaker arrays have been employed increasingly for sound reinforcement. Their high output power and focusing ability facilitate extensive control capabilities as well as extraordinary performance. Based on acoustic simulation, numerical optimization of the array configuration, particularly of FIR filters, adds a new level of flexibility. Radiation characteristics can be established that are not available for conventionally tuned sound systems. It is shown that substantial improvements in sound field uniformity and output SPL can be achieved. Different real-world case studies are presented based on systematic measurements and simulations. Important practical implementation aspects are discussed such as the spatial resolution of driven sources, the number of FIR coefficients, and the quality of loudspeaker data.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society