AES E-Library

AES E-Library

Experiments with Dither in Level-Calibrated Floating Point Audio Processing

Document Thumbnail

The use of dither to decorrelate quantization error in fixed point signal processing systems is a well-established practice in professional audio. Floating point computation, however, is quite common due to the ease of use and ubiquity of high performance platforms, among other reasons. Dither is (anecdotally) less frequently found in floating point audio systems, until the final mapping to fixed point representation, but quantization error occurs in the rounding operation during intermediate calculations. Widrow and others have provided detailed treatment of the quantization error in floating point audio calculations, and in the present work experiments using dither during the internal rounding operation in a floating point unit are compared to the external addition of noise when the signal levels are known to be calibrated from the original analog source.

Author:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=16941

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society