AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Persistent Time-Frequency Shrinkage for Audio Denoising

In many audio processing applications, signals are represented by linear combinations of basis functions (such as with windowed Fourier transforms) that are collected in so-called dictionaries. These are considered well adapted to a particular class of signals if they lead to sparse representations, meaning only a small number of basis functions are required for good approximation of signals. Most natural signals have strong inherent structures, such as harmonics and transients, a fact that can be used for adapting audio processing algorithms. This paper considers the audio-denoising problem from the perspective of structured sparse representation. A generalized thresholding scheme is presented from which simple audio-denoising operators are derived. They perform equally well compared to state-of-the-art methods while featuring significantly less computational costs.

Authors:
Affiliations:
JAES Volume 61 Issue 1/2 pp. 29-38; January 2013
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society