AES Store

Journal Forum

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
10 comments

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Implementation of an Interactive 3-D Reverberator for Video Games Using Statistical Acoustics

An interactive reverberator, which applies realistic computed acoustic responses interactively to video game scenes, is a very important technology for the processing of in-game sounds. The mainframe of an interactive reverberator, which the authors developed, is designed based on statistical acoustics theory, so that it is possible to compute fast enough to realize real-time processing in fast-changing game scenes. Though statistical reverbs generally do not provide a high level of reality, the authors have achieved a quantum leap of sound quality by applying Hanyu's algorithm to conventional theories. The reverberator features: (1) No pre-computing jobs including room modeling are required. (2) Three-dimensional responses are generated automatically. (3) Complex factor of a room's shape, open-air areas, and effects of neighboring reverberations are expressed. The authors implemented the reverberator into a Capcom’s middleware experimentally and have verified it can run effectively. In this paper the algorithm, background theories, and implementation techniques are introduced.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society