AES E-Library

AES E-Library

Distance-Based Automatic Gain Control with Continuous Proximity-Effect Compensation

Document Thumbnail

This paper presents a method of Automatic Gain Control (AGC) that derives the gain from the sound source to microphone distance, utilizing a distance sensor. The concept makes use of the fact that microphone output levels vary inversely with the distance to a spherical sound source. It is applicable to frequently arising situations in which a speaker does not maintain a constant microphone distance. In addition, we address undesired bass response variations caused by the proximity effect. Knowledge of the sound-source to microphone distance permits accurate compensation for both frequency response changes and distance-related signal level changes. In particular, a distance-based AGC can normalize these signal level changes without deteriorating signal quality, as opposed to conventional AGCs, which introduce distortion, pumping, and breathing. Provided an accurate distance sensor, gain changes can take effect instantaneously and do not need to be gated by attack and release time. Likewise, frequency response changes due to undesired proximity-effect variations can be corrected adaptively using precise inverse filtering derived from continuous distance measurements, sound arrival angles, and microphone directivity no longer requiring inadequate static settings on the microphone for proximity-effect compensation.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=16528

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society