Journal Forum

Clean Audio for TV broadcast: An Object-Based Approach for Hearing-Impaired Viewers - April 2015
2 comments

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
13 comments

Sound Board: Food for Thought, Aesthetics in Orchestra Recording - April 2015
2 comments

Access Journal Forum

AES E-Library

Drum Pattern Humanization Using a Recursive Bayesian Framework

Document Thumbnail

In this study we discuss some of the limitations of Gaussian humanization and consider ways in which the articulation patterns exhibited by percussionists can be emulated using a probabilistic model. Prior and likelihood functions are derived from a dataset of professional drummers to create a series of empirical distributions. These are then used to independently modulate the onset locations and amplitudes of a quantized sequence, using a recursive Bayesian framework. Finally, we evaluate the performance of the model against sequences created with a Gaussian humanizer and sequences created with a Hidden Markov Model (HMM) using paired listening tests. We are able to demonstrate that probabilistic models perform better than instantaneous Gaussian models, when evaluated using a 4/4 rock beat at 120 bpm.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society