Journal Forum

Multichannel Sound Reproduction Quality Improves with Angular Separation of Direct and Reflected Sounds - June 2015
1 comment

Clean Audio for TV broadcast: An Object-Based Approach for Hearing-Impaired Viewers - April 2015
2 comments

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007
13 comments

Access Journal Forum

AES E-Library

A Model for Rendering Stereo Signals in the ITD-Range of Hearing

Document Thumbnail

Live sounds at a concert have spatial relationships to each other and to their environment. The specific microphone technique used for recording the sounds, the placement and directional properties of the playback loudspeakers, and the room’s response determine the signals at the listener’s ears and thus the rendering of the concert recording. For the frequency range, in which Inter-aural Time Differences dominate directional hearing, a free-field transmission line model will be used to predict the placement of phantom sources between two loudspeakers. Level panning and time panning of monaural sources are investigated. Effectiveness and limitations of different microphone pairs are shown. Recording techniques can be improved by recognizing fundamental requirements for spatial rendering. Observations from a novel 4-loudspeaker setup are presented. It provides enhanced spatial rendering of 2-channel sound.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=16455

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society