AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Flexilink: A Unified Low Latency Network Architecture for Multichannel Live Audio

The networking of live audio for professional applications typically uses layer 2-based solutions such as AES50 and MADI utilizing fixed time slots similar to Time Division Multiplexing (TDM). However, these solutions are not effective for best effort traffic where data traffic utilizes available bandwidth and is consequently subject to variations in QoS. There are audio networking methods such as AES47, which is based on asynchronous transfer mode (ATM), but ATM equipment is rarely available. Audio can also be sent over Internet Protocol (IP), but the size of the packet headers and the difficulty of keeping latency within acceptable limits make it unsuitable for many applications. In this paper we propose a new unified low latency network architecture that supports both time deterministic and best effort traffic toward full bandwidth utilization with high performance routing/switching. For live audio, this network architecture allows low latency as well as the flexibility to support multiplexing multiple channels with different sampling rates and word lengths.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society