AES Store

Journal Forum

Reflecting on Reflections - June 2014

Audibility of a CD-Standard A/DA/A Loop Inserted into High-Resolution Audio Playback - September 2007

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Access Journal Forum

AES E-Library

Note Clustering Based on 2-D Source-Filter Modeling for Underdetermined Blind Source Separation

For blind source separation, the non-negative matrix factorization extracts single notes out of a mixture. These notes can be clustered to form the melodies played by a single instrument. A current approach for clustering utilizes a source filter model to describe the envelope over the first dimension of the spectrogram: the frequency-axis. The novelty of this paper is to extend this approach by a second source-filter model, characterizing the second dimension of a spectrogram: the time-axis. The latter one models the temporal evolution of the energy of one note: an instrument specific envelope is convolved with an activation vector, corresponding to tempo, rhythm, and amplitudes of single note instances. We introduce an unsupervised clustering framework for both models and a simple, yet effective combination strategy. Finally, we show the advantages of our separation algorithm compared with two other state-of-the-art separation frameworks: the separation quality is comparable, but our algorithm needs much less computational load, is independent from other BSS-algorithm as initialization, and works with a unique set of parameters for a wide range of audio data.

AES Conference:
Paper Number:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society