AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Individualization of Dynamic Binaural Synthesis by Real Time Manipulation of ITD

The dynamic binaural synthesis of acoustic environments is usually constrained to the use non-individual impulse response datasets, measured with dummy heads or head and torso simulators. Thus, fundamental cues for localization such as interaural level differences (ILD) and interaural time differences (ITD) are necessarily corrupted to a certain degree. For ILDs, this is a minor problem as listeners may swiftly adapt to spectral coloration at least as long as an external reference is not provided. In contrast, ITD errors can be expected to lead to a constant degradation of localization. Hence, a method for the individual customization of dynamic binaural reproduction by means of real time manipulation of the ITD is proposed. As a prerequisite, subjectively artifact free techniques for the decomposition of binaural impulse responses into ILD and ITD cues are discussed. Finally, based on listening test results, an anthropometry-based prediction model for individual ITD correction factors is presented. The proposed approach entails further improvements of auditory quality of real time binaural synthesis.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society