Journal Forum

A Meta-Analysis of High Resolution Audio Perceptual Evaluation - June 2016
2 comments

Synthetic Reverberator - January 1960
3 comments

Sound Board: High-Resolution Audio - October 2015
4 comments

Access Journal Forum

AES E-Library

MIAUDIO—Audio Mixture Digital Matrix

Document Thumbnail

Electroacoustic music is turning more and more to the sound diffusion techniques. Multichannel sound systems like BEAST and SARC are built so that the musician can independently control the intensity of several audio channels. This feature provides the possibility of creating several sound diffusion scenarios, i.e., immersion and the possibility of movement around the audience. The developed system (MIAUDIO) is a real-time sound diffusion system currently able to mix up to 8 audio input channels through 32 outputs channels. A hardware solution was adopted using a Field Programmable Gate Array (FPGA) to perform the mixture. The analogue audio signals are conditioned, converted to digital format by several analogue-to-digital converters and then sent to the FPGA that is responsible to perform the mixing algorithm. The host computer connects to the FPGA via USB and is responsible for supplying the parameters that define the audio mixture. Being so, the user has control over the input levels through the output channels independently. MIAUDIO was successfully implemented with a low-cost solution when compared with similar systems. All the channels were tested using a Precision One system with very good results.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: http://www.aes.org/e-lib/browse.cfm?elib=15362

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is temporarily free for AES members.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society