AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Improving Rhythmic Pattern Features Based on Logarithmic Preprocessing

In the area of Music Information Retrieval, the rhythmic analysis of music plays an important role. In order to derive rhythmic information from music signals, several feature extraction algorithms have been described in the literature. Most of them extract the rhythmic information by auto-correlating the temporal envelope derived from different frequency bands of the music signal. Using the auto-correlated envelopes directly as an audio-feature is afflicted with the disadvantage of tempo dependency. To circumvent this problem, further post-processing via higher-order statistics has been proposed. However, the resulting statistical features are still tempo dependent to a certain extent. This paper describes a novel method, which logarithmizes the lag-axis of the auto-correlated envelope and discards the tempo-dependent part. This approach leads to tempo-invariant rhythmic features. A quantitative comparison of the original methods versus the proposed procedure is described and discussed in this paper.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society