AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

An Alternative Ambisonics Formulation: Modal Source Strength Matching and the Effect of Spatial Aliasing

Ambisonics synthesizes sound fields as a sum over angular (spherical/cylindrical harmonic) modes, resulting in the definition of an isotropically smooth angular resolution. This means, virtual sources are synthesized with outstanding smoothness across all angles of incidence, using discrete loudspeakers that uniformly cover a spherical or cylindrical surface around the listening area. The classical Ambisonics approach models the fields of these discrete loudspeakers in terms of a sampled continuum of plane-waves. More accurately, the contemporary concept of Ambisonics uses a continuous angular distribution of point-sources at finite distance instead, which is considerably easier to imagine. This also improves the accuracy of holophonic sound field synthesis and the analytic description of the sweet spot. The sweet spot is a limited area of faultless synthesis emerging from angular harmonics truncation. Additionally, playback with loudspeakers causes spatial aliasing. In this sense, the contemporary concept allows for a succesive consideration of the major shortcomings of Ambisonics: the limited sweet spot size and spatial aliasing. To elaborate on this, our paper starts with the solution of the nonhomogeneous wave equation for a spherical point-source distribution, and ends with a novel study on spatial aliasing in Ambisonics.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society