AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Implementing Asymmetrical Crossovers

Crossovers are often described in terms of symmetrical pairs of high- and low-pass filters with a common denominator, usually Butterworth, double Butterworth (Linkwitz-Riley), or notched. The native response of the usual closed-back tweeter is second-order high-pass, but its cone excursion goes to a compliance-limited maximum at frequencies below its cutoff. It therefore needs further high-pass filtering to prevent excessive power dissipation and cone excursion produced by components of the program signal at frequencies lower than its passband. Thus the overall high-pass transfer function must be of at least third order, and preferably higher. In the low-pass channel, on the other hand, such high-order filtering is often unnecessary, so the cost and complexity of the crossover can be reduced significantly by using an asymmetrical crossover. Various possibilities are explored, with comments on their advantages and disadvantages compared with symmetrical systems.

Author:
Affiliation:
JAES Volume 55 Issue 10 pp. 819-832; October 2007
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society