Journal Forum

Synthetic Reverberator - January 1960
1 comment

Multichannel Sound Reproduction Quality Improves with Angular Separation of Direct and Reflected Sounds - June 2015
1 comment

Clean Audio for TV broadcast: An Object-Based Approach for Hearing-Impaired Viewers - April 2015

Access Journal Forum

AES E-Library

On the Training of Multilayer Perceptrons for Speech/Non-Speech Classification in Hearing Aids

Document Thumbnail

This paper explores the application of multilayer perceptrons (MLP) to the problem of speech/non-speech classification in digital hearing aids. When properly designed and trained, MLPs are able to generate an arbitrary classification frontier with a relatively low computational complexity. The paper will focus on studying the key influence of the training process on the performance of the system. An appropriate election of the training algorithm will help to provide better classification with a lower number of neurons in the network, which leads to a lower computational complexity. The results obtained will be compared with those obtained from two reference algorithms (the Fisher linear discriminant and the k-Nearest Neighbour), along with some comments regarding the computational complexity.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society