AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Development of a Highly Directive Endfire Loudspeaker Array

Control of the directivity of loudspeaker systems is important in applications of sound reproduction with public address systems. The use of loudspeaker arrays shows great advantages to bundle the sound in specific directions. Usually, the loudspeakers are placed on a vertical line and the directivity is mainly in a plane perpendicular to that line although the radiation direction can be adapted with filter techniques, called beamforming. In this paper we present results on the applicability of a loudspeaker line array where the main directivity is in the direction of that line, using so-called endfire beamforming, resulting in a “spotlight” of sound in a preferred direction. Optimized beamforming techniques were used, which were developed for the reciprocal problem of directional microphone arrays. Effects of the design parameters of the loudspeaker array system were investigated and we found that the stability factor can be a useful parameter to control the directional characteristics. A prototype constant beam width array system was tested by simulation and measurement and the results supported our findings.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society