AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

Identifying Saxophonists from Their Playing Styles

This paper describes a machine learning approach to the problem of identifying professional musicians from their playing style. We focus on the identification of jazz saxophonists by studying how they express and communicate their view of the musical and emotional content of musical pieces (performed from a musical score). In particular, we investigate expressive deviations of parameters such as pitch, timing, amplitude and timbre in monophonic audio recordings. We describe how we extract a symbolic description from the audio recordings and how we use this symbolic description to train a performance-based interpreter classifier.

Authors:
Affiliations:
AES Conference:
Paper Number:
Publication Date:
Subject:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society