AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

Filter Design Method for Loudspeaker Equalization Based on IIR Parametric Filters

A novel method for the equalization of loudspeakers and other audio systems using IIR (infinite impulse response) parametric filters is presented. The main characteristic of the proposed filter design method resides in the fact that the equalization structure is planned from the beginning as a chain of SOSs (second-order sections), where each SOS is a low-pass, high-pass, or peak filter, defined by its parameters. The algorithm combines a direct search method with a heuristic parametric optimization process where constraints on the values could be imposed in order to obtain practical implementations. A psychoacoustic model based on the detection of peaks and dips in the frequency response has been employed to determine which ones need to be equalized, reducing the filter order without noticeable effect. The first computed sections of the designed filter are the ones that correct the response more effectively, allowing scalable solutions when hardware limitations exist or different degrees of correction are needed. The method has been validated with subjective testing and compared with other methods. Its results could be applied to passive and multiway active loudspeakers.

Authors:
Affiliation:
JAES Volume 54 Issue 12 pp. 1162-1178; December 2006
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society