AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

Efficient Resonant Loudspeakers with Large Form-Factor Design Freedom

Small cabinet loudspeakers with a flat response are quite inefficient. Assuming that the frequency response can be manipulated electronically, systems that have a nonflat soundpressure level (SPL) response can provide greater usable efficiency. Such a nonflat design can deal with very compact housing, but for small drivers it would require a relatively large cone excursion to obtain a high SPL. A new solution is presented that uses a resonant combination of a coupling volume and a long pipe-shaped port. In this structure the efficient resonant coupling of the driver to the acoustic load enables small drivers with modest cone displacement to achieve a high SPL. Due to the high and narrow peak in the frequency response, the normal operating range of the driver decreases considerably. This makes the driver unsuitable for normal use. To overcome this, a second measure is applied. Nonlinear processing essentially compresses the bandwidth of a 20–120-Hz 2.5-octave bass signal down to a much narrower span, which is centered where the driver efficiency is maximum. This system allows very compact loudspeakers. An experimental example of such a design is described, and a working prototype is discussed. The new loudspeaker is compared with a closed cabinet and a bass-reflex cabinet using the same drivers. It appears that the new loudspeaker has the highest output in its working range.

JAES Volume 54 Issue 10 pp. 940-953; October 2006
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society