AES Store

Journal Forum

Reflecting on Reflections - June 2014
1 comment

Quiet Thoughts on a Deafening Problem - May 2014
1 comment

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
5 comments

Access Journal Forum

AES E-Library

Synthesis of Room Responses Using Virtual Source Representation with Application in Reverberator Design

Reverberators play a vital role in immersive audio reproduction. Conventional methods for synthesizing reverberation generally are either computationally intensive or ineffective in producing a natural sensation of environmental settings. A synthesis technique is developed using discrete virtual source representation in an effort to overcome these difficulties. In comparison with the finite-element method (FEM) and the boundary-element method (BEM), which rely on complex numerical operations, the present method is based on a simple representation of the sound field with a distribution of discrete simple sources close to the boundary. The complex strengths of the virtual sources are then calculated by solving a frequency-domain least-squares problem. Parameters such as the geometry, size, and wall absorption of the room are naturally incorporated into the synthesis process. The filtering property of human hearing is also considered in a nonuniform sampling procedure to further simplify the computation. Numerical simulations are carried out for a rectangular room model and a concert hall to investigate the effects of room parameters on the synthesis performance. Subjective listening experiments demonstrate that the present technique is capable of rendering remarkable realism of reverberation.

Authors:
Affiliation:
JAES Volume 53 Issue 4 pp. 297-306; April 2005
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society