Journal Forum

Synthetic Reverberator - January 1960

Sound Board: High-Resolution Audio - October 2015

Synchronized Swept-Sine: Theory, Application, and Implementation - October 2015

Access Journal Forum

AES E-Library

Implementation of High-Order Convolution Algorithms with Low Latency on Silicon Chips

Document Thumbnail

Audio signal processing often requires modeling of large rooms (e.g. churches) with impulse responses of several seconds duration. Direct convolution of the sound stream with such long responses exceeds the capacity of common signal processors by far. Using the Fast Fourier Transform instead reduces the number of operations logarithmically, but introduces unacceptable latency. Segmenting the processing into initial short blocks and subsequent longer ones lets one trade latency vs. computation power as presented in previous AES papers. Hardware-wise the reduction of operations comes at the cost of large storage with high memory bandwidths. Dedicated application specific integrated circuits (ASIC) are predestined to perform the rather regular processing, freeing the processors for other tasks. This paper shows suitable architectures for integration on silicon of optimized fast-convolution algorithms. Possible optimizations for fast-convolution algorithms are examined. Based on these findings different architectures for integration on ASIC/FPGA (Field Programmable Gate Array) of such algorithms are developed, analysed and compared. The paper is concluded by presenting an exemplary ASIC implementation.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society