AES E-Library

AES E-Library

Maximum Efficiency of Compression Drivers

Document Thumbnail

Small-signal calculations show that the maximum nominal efficiency of a horn loudspeaker compression driver is 50% and the maximum true efficiency is 100%. Maximum efficiency occurs at the driver's resonance frequency. In the absence of driver mechanical losses, the maximum nominal efficiency occurs when the reflected acoustic load resistance equals the driver 's voice-coil resistance and the maximum true efficiency occurs when the reflected acoustic load resistance is much higher that the driver’s voice-coil resistance. To maximize the driver 's broad-band true efficiency, the Bl force factor must be increased as much as possible, while jointly reducing moving mass, voice-coil inductance, mechanical losses, and front airchamber volume. Higher compression ratios will raise high-frequency efficiency but may decrease mid-band efficiency. This paper will explore in detail the efficiency and design implications of both the nominal and true efficiency relationships including gain-bandwidth tradeoffs.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=12850

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society