Journal Forum

Synthetic Reverberator - January 1960

Sound Board: High-Resolution Audio - October 2015

Synchronized Swept-Sine: Theory, Application, and Implementation - October 2015

Access Journal Forum

AES E-Library

Finite Element Methods and Equivalent Electrical Models for Loudspeaker Characterization.

Document Thumbnail

Current research into electroacoustics tends to determine the global transfert function between an initial electrical signal and the acoustical signal supplied at the ear. Because electrodynamic transducers radiate in a large frequency bandwidth, lumped parameter model such as Thiele and Small's is not sufficient to provide a realistic simulation of the vibro-acoustic behaviour of the system. This study proposes the use of Finite Element and Boundary Element Methods to compute a complex 3D response of a loudspeaker for each mechanical modes and then synthesize an equivalent electrical model that takes into account acoustical coupling between all modes.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society