AES E-Library

AES E-Library

Adaptive Predistortion Filter for Linearization of Digital PWM Power Amplifier using Neural Networks

Document Thumbnail

The paper presents a method to compensate for nonlinear distortion of digital Pulse Width Modulation (PWM) power amplifiers by prefiltering the input signals using artificial neural networks. We first construct a model of the digital amplifier using artificial neural networks. Using this model, the artificial neural network model of a predistortion filter is trained such that the combined system, the digital amplifier and predistortion filter, produces an output, that is linearly proportional to the input. The simulation results show that the artificial neural networks of the predistortion filter can effectively correct the nonlinear distortion of the digital amplifier.

AES Convention: Paper Number:
Publication Date:

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!

AES - Audio Engineering Society