AES Store

Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES E-Library

A New Nonstationary Test Procedure for Improved Loudspeaker Fault Detection

Loudspeaker fault detection is a difficult industrial problem for both manufacturing fault detection and maintenance. A new brief (<100-ms), nonstationary test signal aimed at detecting acoustic loudspeaker faults is presented. This signal is composed of four simultaneous chirp components and contains all the frequencies in the loudspeaker frequency range. The signal processing technique used to process the recorded loudspeaker responses is based on optimized time frequency representations (TFRs). The TFR corresponding to a given loudspeaker is compared to a reference TFR using a time frequency distance measure. The efficiency of the proposed test procedure, as well as its practical interest, are shown with real data.

Authors:
Affiliations:
JAES Volume 50 Issue 6 pp. 458-469; June 2002
Publication Date:

Click to purchase paper or login as an AES member. If your company or school subscribes to the AES Journal then you can look for this paper in the institutional version of the Online Journal. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $20 for non-members, $5 for AES members and is free for E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society