AES E-Library

AES E-Library

Identification Compression Driver Parameters Based on a Concept of Diaphragm's Frequency-Dependent Area

Document Thumbnail

In the previous work, matrix analysis was applied the derivation of the transfer matrix of a compression driver’s diaphragm. Its mechanical impedance consisted of lumped parameters and a part corresponding to the high-frequency breakups. In the current work the mechanical impedance is based on lumped parameters whereas the area of the diaphragm is presented as a function of frequency. The transfer function of compression driver is derived from the overall matrix that includes the frequency-dependent area of the diaphragm. The area is included in the transformation matrix that links the mechanical and acoustical parts. By equating the measured SPL for a given input voltage to SPL derived from the model, the expression for the frequency-dependent area of the diaphragm can be derived. This information is used in modeling and design of different drivers using the identified diaphragm.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=17487

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society