AES E-Library

AES E-Library

On Accommodating Pitch Variation in Long Term Prediction of Speech and Vocals in Audio Coding

Document Thumbnail

Exploiting inter-frame redundancies is key to performance enhancement of delay constrained perceptual audio coders. The long term prediction (LTP) tool was introduced in the MPEG Advanced Audio Coding standard, especially for the low delay mode, to capitalize on the periodicity in naturally occurring sounds by identifying a segment of previously reconstructed data as prediction for the current frame. However, speech and vocal content in audio signals is well known to be quasi-periodic and involve small variations in pitch period, which compromise the LTP tool performance. The proposed approach modifies LTP by introducing a single parameter of “geometric” warping, whereby past periodicity is geometrically warped to provide an adjusted prediction for the current samples. We also propose a three-stage parameter estimation technique, where an unwarped LTP filter is first estimated to minimize the mean squared prediction error; then filter parameters are complemented with the warping parameter, and re-estimated within a small neighboring search space to retain the set of S best LTP parameters; and finally, a perceptual distortion-rate procedure is used to select from the S candidates, the parameter set that minimizes the perceptual distortion. Objective and subjective evaluations substantiate the proposed technique’s effectiveness.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=16509

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

Start a discussion about this paper!


AES - Audio Engineering Society