AES E-Library

AES E-Library

HOBA-VR: HRTF On Demand for Binaural Audio in Immersive Virtual Reality Environments

Document Thumbnail

One of the main challenges of spatial audio rendering in headphones is the personalization of the so-called head-related transfer functions (HRTFs). HRTFs capture the listener’s acoustic effects supporting immersive and realistic virtual reality (VR) contexts. This e-brief presents the HOBA-VR framework that provides a full-body VR experience with personalized HRTFs that were individually selected on demand based on anthropometric data (pinnae shapes). The proposed WAVH transfer format allows a flexible management of this customization process. A screening test aiming to evaluate user localization performance with selected HRTFs for a non-visible spatialized audio source is also provided. Accordingly, is might be possible to create a user profile that contains also individual non-acoustic factors such as localizability, satisfaction, and confidence.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:
Subject:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=19546

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

The Engineering Briefs at this Convention were selected on the basis of a submitted synopsis, ensuring that they are of interest to AES members, and are not overly commercial. These briefs have been reproduced from the authors' advance manuscripts, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for their contents. Paper copies are not available, but any member can freely access these briefs. Members are encouraged to provide comments that enhance their usefulness.

Start a discussion about this paper!


AES - Audio Engineering Society