2016 AES CONFERENCE

AUDIO FOR VIRTUAL AND AUGMENTED REALITY

FRIDAY, SEPT 30 THRU SATURDAY, OCT 1
LOS ANGELES CONVENTION CENTER
CONFERENCE PROGRAM
Welcome to the first AES International Conference on Audio for Virtual and Augmented Reality! We are really proud to present this amazing technical program, which is the result of many months of extremely hard teamwork. We aimed for the best content we could possibly provide, and here you have it. We are extremely thankful to our great presenters, authors, keynote speakers and sponsors. Together, we made this possible and we sincerely hope you will take away a lot of useful information. Also, I’d like to extend our special thanks to our delegates, coming from all over the world to attend this truly unique event, and to our really hard working team of volunteers, which ultimately made it possible to pack this awesome quality and quantity of knowledge in 2 full days crammed with papers, workshops, tutorials and even a technical showcase. Welcome to the show!

I would like to extend a warm welcome to all of our delegates, authors, presenters and sponsors. This conference has been a dream of Andres’ and mine since May of 2015. The world of VR / AR has grown so quickly, so fast that we knew we had to bring a conference dedicated specifically to this topic to the audio community. We could not have done this without the hard work and dedication of an incredible conference committee. VR / AR provides entirely new opportunities for audio as it is now part of the experience, not just an aid in conveying story. It has been speculated by Wall Street that VR / AR will be “as game changing as the advent of the PC”; so we’re in for an incredible journey. I believe the authors, presenters and sponsors here are some of the best visionaries to lead us on that journey. Please, enjoy the conference.
LOS ANGELES CONVENTION CENTER

LOCC Attendee Directions
LA Live Entertainment District
Visitor Information Centers
Metro Guide

CONFERENCE COMMITTEE

ANDRES MAYO
Conference Co-Chair

LINDA GEDEMER
Conference Co-Chair

RICHARD WOLLRIICH
Business & Finance Chair/Treasurer

BRIAN SEAGRAVE
Program Content Assistant/Secretary

GARY EPSTEIN
Website Coordinator

PABLO "TANGO" FORMICA
Social Media Coordinator

STEPHEN O'HARA
Convention Volunteer Coordinator

GRAHAM KIRK
Sales Director

GREG KADORIAN
Event Logistics Chair

RICHARD WOLLRICH
Website Coordinator

SARAH STEVENSON
Session Chair

PROGRAM AND SIGNAGE DESIGNER: EZEQUIEL COLAVITA

The committee would also like to recognize the hard work of these contributors (in alphabetical order):

VIVIANA AKEL
Plugged Minds

CHRIS CAIN
University of California, Santa Cruz.

MICHELLE GOSSMAN
Event Manager, Los Angeles Convention Center

MEL LAMBERT
Content-Creators.com

DAVID SCHEIRMAN
President-Elect, AES
Virtual, Augmented, and Mixed Reality have the potential of delivering interactive experiences that take us to places of emotional resonance, give us agency to form our own experiential memories and become part of the everyday lives we will live in the future. Philip Lelyveld will define what Virtual, Augmented, and Mixed Reality are, present recent developments that will shape how they will potentially impact entertainment, work, learning, social interaction, and life in general, and raise rarely-mentioned but important issues that will impact how VR/AR/MR is adopted. Just as TV programming progressed from live broadcasts of staged performances to today's very complex language of multithread long-form content, so VR/AR/MR will progress from the current 'early days' of projecting existing media language with a few tweaks into a headset experience to a new VR/AR/MR-specific language that both the creatives and the audience understand. Philip’s goal is to bring you up to speed on the current state, the potential, and the known barriers to adoption of Virtual, Augmented, and Mixed Reality.

Two decades of progress can change how we live and think in ways that boggle the mind. Audio is a small piece of that, but it’s our piece. 20 years ago, the PC got rudimentary sound cards; now the entire "multitrack recording studio" lives on our computers. Some of us saw that development as inevitable, but in 1996 those smart people sounded fairly edgy, to say the least. And of those smart people, who among them saw that texting would be the "killer app" for smart phones, in many ways trumping audio communication?

Let's take our accumulated wisdom from the past 20 years of growth and non-growth of audio and computing, and see if we can't get some feel for what it will be like in this room 20 years from now, looking back. With luck, we will be nodding our heads sagely, saying, "Yep, we saw that one coming way back in 2016!"
TUTORIALS

THEATER | 9:45AM
AUDIO RECORDING AND PRODUCTION FOR VIRTUAL REALITY/360° APPLICATIONS

Chair: JAN PLOGSTIES
Fraunhofer Institute
Participants: CHRISS PIKE
BBC Research & Development
DILLON COWER
Qualcomm Technologies Inc.
CHRIS PIKE
BBC Research & Development
TUTORIALS

THEATER | 11:30AM
CREATING IMMERSIVE & AESTHETIC AUDITORY SPACES FOR VIRTUAL AND AUGMENTED REALITY

CHANEL SUMMERS
University of Southern California
Syndicate 17 LLC

ABSTRACT
This presentation will discuss the challenges and provide specific solutions for creating audio within interactive virtual and augmented reality experiences. Audio techniques will be revealed that can be used today to advance storytelling and gameplay in virtual environments while creating a cohesive sense of place. Processes and techniques will be demonstrated for use in the creation of soundscapes in shipping products, ranging from immersive mixed reality experiences to multi-participant, multi-site, location based games.

THEATER | 12:45AM
LUNCHEON SESSION 1: CREATING SCIENTIFICALLY VALID SPATIAL AUDIO FOR VR AND AR: THEORY, TOOLS AND WORKFLOWS

RAMANI DURAIWAMI
ADAM D’DONOVAN
VisiSonics Corp.

ABSTRACT
The goal of VR and AR is to immerse the user in a created world by fooling the human perceptual system into perceiving rendered objects as real. This must be done without the brain experiencing fatigue: accurate audio representation plays a crucial role in achieving this. Unlike vision with a narrow foveated field of view, human hearing covers all directions in full 3D. Spatial audio systems must provide realistic rendering of sound objects in full 3D to complement stereo visual rendering. We will describe several areas of our research, initially conducted at the University of Maryland over a decade, and since at VisiSonics, that led to the development of a robust 3D audio pipeline which includes capture, measurement, mathematical modeling, rendering and personalization. The talk will also demonstrate workflow solutions designed to enrich the audio immersion for the gaming, video post-production and capture in VFX/S.

THEATER | 1:00PM
SPATIAL AUDIO AND SOUND PROPAGATION FOR VR: NEW DEVELOPMENTS, IMPLEMENTATIONS, AND INTEGRATION

Chair: DINESH MANOCHA
Univ. of North Carolina @ Chapel Hill
Participants: DR. ANISH CHANDA
Impulsisonic Inc.
NEIL WAKEFIELD
Linden Lab

ABSTRACT
In this tutorial, we give an overview of recent research and tools for immersive spatial audio and sound propagation effects for VR. We also discuss sound design and integration aspects of adding these propagation techniques and capabilities to a massive VR platform, Project Sansar from Linden Lab. Spatial audio is important to maintain audio-visual coherence in VR for increased realism and better sense of presence. It refers to 3D audio and environmental effects like sound occlusion, reflection, diffraction, and reverberation. However, quickly simulating spatial audio to update with orientation and positional changes in VR is computationally challenging. We will give an overview of research techniques that have been developed in the last 10 years for efficiently modeling spatial audio for complex VR worlds. There will also be a hands on tutorial using Phonon, that has implemented many of these state of the art spatial audio algorithms. Phonon integrates with a wide variety of game engines and audio engines and we use these applications to demonstrate the performance of these novel spatial audio algorithms. We also demonstrate how 3D audio effect can be applied to environmental effects in spatial audio. Finally, we will discuss various sound design considerations when adding spatial audio for VR as well as practical challenges and considerations when adding spatial audio into a large VR platform, especially with regards to making spatial audio tools accessible for untrained users or content creators.

THEATER | 2:00PM
3D AUDIO POST-PRODUCTION WORKFLows FOR VR

VIKTOR PHOENIX
SCOTT GERSHON
Technicolor

ABSTRACT
Overview of solutions to some of the creative and practical challenges encountered in the audio post-production pipeline for 360 videos and Virtual Reality. We discuss methodologies for monitoring, editing, designing, mixing, mastering, and delivering audio for VR and 360 Videos. We discuss how to integrate a 3D audio workflow into existing post-production pipelines by merging best practices from Games, Television, and Feature Film along with new strategies for this emerging medium. The future of content delivery and playback is considered while still respecting current infrastructures for delivering client projects and accommodating the variety of delivery formats required for various virtual reality and 360 video platforms.

THEATER | 3:30PM
VAST SPACE \& AUGMENTED REALITY - ACCURACY & PLAUSIBILITY, INTERACTION

5. What quality aspects are important?
- Accuracy and plausibility, interaction with video?

THEATER | 4:30PM
SONIC SCIENCE: TRANSMISSION & AUDITORY PERCEPTION OF VIRTUAL REALITY

Chair: DR. CHRIS STECKER
Vanderbuilt University School of Medicine
Participants: DR. ERICK GALLUN
VA National Center for Rehabilitative Audiological Research
DR. DAN TOLLIN
University of Colorado
DR. RYAN MCCREEY
Boys Town National Research Hospital
DR. POPPY CRUM
Dolby Laboratories

ABSTRACT
This panel discussion will feature investigators in hearing science and audiology, including experts in binaural hearing, auditory cognitive neuroscience. Brief presentations will highlight the current and future impacts of hearing science on AVAR—e.g., the evolution of binaural hearing aids as spatially intelligent devices, lessons from auditory scene analysis, and brain-directed signal processing. Applications of AVAR technology to hearing science and the audiology clinic will also be discussed, e.g., the use of immersive VR to diagnose and retrain spatial hearing deficits, and the benefits of using binaural devices to study hearing "in the wild."
Sound Localization in 3D Space

Moving virtual source perception in 3D space

Sam Hughes & Dr. Gavin Kearney
University of York

This paper investigates the renderability of moving sound sources in the context of real-world loudspeaker arrays and virtual loudspeaker arrays for binaural listening in VR experiences. Near Field compensated Higher Order Ambisonics (HOA) and Vector Base Amplitude Panning (VBAP) are investigated for both spatial accuracy and tonal coloration with moving sound source trajectories. A subjective listening experiment is presented over 6, 26, and 50 channel real and virtual spherical loudspeaker configurations to investigate accuracy of spatial rendering and tonal effects. The results show the applicability of different degrees of VBAP and HOA to moving source rendering and illustrate subjective similarities and differences to real and virtual loudspeaker arrays.

Disparity in horizontal correspondence of sound and source positioning: the impact on spatial presence for cinematic VR

Angela McArthur
BBC R&D/Queen Mary University London

This study examines the extent to which disparity in azimuth location between a sound cue and image target can be varied in cinematic virtual reality (VR) content, before presence is broken. It applies disparity consistently and inconsistently across five otherwise identical sound-image events. The investigation explores spatial presence, a sub-construct of presence, hypothesising that consistently applied disparity in horizontal audio-visual correspondence elicits higher tolerance before presence is broken, than inconsistently applied disparity. Guidance about the interactions of subjective judgements and spatial presence for sound positioning is needed for non-specialists to leverage VR’s spatial sound environment. Although approximate compared to visual localization, auditory localization is paramount for VR: it is lighting condition-independent, omnidirectional, not as subject to occlusion, and creates presence.

Lateral listener movement on the horizontal plane (part 2): Sensing motion through binaural simulation in a reverberant environment

Matthew Boerum, Bryan Martin, Richard King, George Massenburg
McGill University

In a multi-part study, first-person horizontal movement between two virtual sound source locations in an auditory virtual environment (AVE) was investigated by evaluating the sensation of motion as perceived by the listener. A binaural cross-fading technique simulated this movement while real binaural recordings of motion were made as a reference using a motion apparatus and mounted head and torso simulator (HATS). Trained listeners evaluated the sensation of motion among real and simulated conditions in 2 opposite environment-dependent experiments: Part 1 (semi-anechoic), Part 2 (reverberant). Results from Part 2 were proportional to Part 1, despite the presence of reflections. The simulation provided the greatest sensation of motion again, showing that binaural audio recordings present less sensation of motion than the simulation.

Theatre 4:30PM

VR Audio: The Convergence of Sound Profession

Christopher Hegstrom
Symmetry Audio

Abstract

At the very least, VR audio is an exciting new paradigm for audio professionals to learn & at most it is a convergence of all the preceding subcategories of audio professions. Built with game engines, using film cinematography on a mobile platform with the presence of theater & live streaming inspired by broadcast, it will take all of our combined knowledge to pull off convincing VR. Audio is the glue that binds all of these sub-genres. This talk will identify what we can apply to VR audio from each of these proficiencies, what we can learn from other VR system technology (such as cameras or haptic) and how audio can inspire other professions with our standardization and collaboration.

Papers

Room 409A 9:45AM

Sound Localization in 3D Space

Moving virtual source perception in 3D space

Sam Hughes & Dr. Gavin Kearney
University of York

This paper investigates the renderability of moving sound sources in the context of real-world loudspeaker arrays and virtual loudspeaker arrays for binaural listening in VR experiences. Near Field compensated Higher Order Ambisonics (HOA) and Vector Base Amplitude Panning (VBAP) are investigated for both spatial accuracy and tonal coloration with moving sound source trajectories. A subjective listening experiment is presented over 6, 26, and 50 channel real and virtual spherical loudspeaker configurations to investigate accuracy of spatial rendering and tonal effects. The results show the applicability of different degrees of VBAP and HOA to moving source rendering and illustrate subjective similarities and differences to real and virtual loudspeaker arrays.

Disparity in horizontal correspondence of sound and source positioning: the impact on spatial presence for cinematic VR

Angela McArthur
BBC R&D/Queen Mary University London

This study examines the extent to which disparity in azimuth location between a sound cue and image target can be varied in cinematic virtual reality (VR) content, before presence is broken. It applies disparity consistently and inconsistently across five otherwise identical sound-image events. The investigation explores spatial presence, a sub-construct of presence, hypothesising that consistently applied disparity in horizontal audio-visual correspondence elicits higher tolerance before presence is broken, than inconsistently applied disparity. Guidance about the interactions of subjective judgements and spatial presence for sound positioning is needed for non-specialists to leverage VR’s spatial sound environment. Although approximate compared to visual localization, auditory localization is paramount for VR: it is lighting condition-independent, omnidirectional, not as subject to occlusion, and creates presence.

Lateral listener movement on the horizontal plane (part 2): Sensing motion through binaural simulation in a reverberant environment

Matthew Boerum, Bryan Martin, Richard King, George Massenburg
McGill University

In a multi-part study, first-person horizontal movement between two virtual sound source locations in an auditory virtual environment (AVE) was investigated by evaluating the sensation of motion as perceived by the listener. A binaural cross-fading technique simulated this movement while real binaural recordings of motion were made as a reference using a motion apparatus and mounted head and torso simulator (HATS). Trained listeners evaluated the sensation of motion among real and simulated conditions in 2 opposite environment-dependent experiments: Part 1 (semi-anechoic), Part 2 (reverberant). Results from Part 2 were proportional to Part 1, despite the presence of reflections. The simulation provided the greatest sensation of motion again, showing that binaural audio recordings present less sensation of motion than the simulation.
This contribution highlights challenges, capturing and reproduction was achieved. Challenges included capturing audio including dialogue aboard the real plane, crafting an experience that encourages repeated viewing and combining a sense of truthful realism with a sense of dream-like luxury without relying on a musical score, all in a head tracked spatialized mix. Artistic conventions around non-diegetic sound and their psychological impact in VR also required consideration.

CREATING AN IMMERSIVE 360°-AV CONCERT EXPERIENCE AT THE 50TH MONTREUX JAZZ FESTIVAL USING REAL-TIME ROOM SIMULATION

SÖNKE FELZER
DIRK SCHRODER
FABIAN KAUBER
AudioBorn GmbH

The Montreux Jazz Festival is the second largest jazz festival in the world. Since the beginning 50 years ago, all concerts have been recorded for the Montreux Jazz Archive, a unique treasure and the largest collection of live music, declared Unesco World Heritage. Following the vision of the deceased founder Claude Nobs, who always pushed the boundaries by applying latest recording technologies, this year’s 50th anniversary of the festival introduced capturing of 3D-audio and 360° stereoscopic video. Using a virtual reality camera, ambisonics microphones, as well as multitrack audio recording with 3D post-processing, an immersive capture and reproduction was achieved. This contribution highlights challenges, experiences and solutions of the preparation, recording, post-processing and release of this immersive production.

IMMERSIVE AUDIO RENDERING FOR INTERACTIVE COMPLEX VIRTUAL ARCHITECTURAL ENVIRONMENTS

IMRAN MUHAMMAD
DR. JIN YONG JEON
Han Yang University

In this study we investigate methods for sound propagation in virtual complex architectural environments for spatialized audio rendering to use in immersive virtual reality (VR) scenarios. During the last few decades, sound propagation models have been designed and investigated for complex building structures, using geometrical approach (GA) and hybrid techniques. For sound propagation, it is required to design fast simulation tools to incorporate a sufficient number of dynamically moving sound sources, room acoustical properties, and reflections and diffraction from interactively changing surface elements in VR environments. Using physically based models, we achieved a reasonable trade-off between sound quality and system performance. Furthermore, we describe the sound rendering pipeline into a virtual scene to simulate virtual environment.

IMMERSIVE AUDIO FOR VR

JOEL SUSAL
KURT KRAUSS
DR. NICOLAS TSINGOS
MARCUS ALTMAN
Dolby Laboratories

Object based sound creation, packaging and playback of content is now prevalent in the Cinema and Home Theater, delivering immersive audio experiences. This has paved the way for Virtual Reality sound where precision of sound is necessary for complete immersion in a virtual world.

CREATING AN IMMERSIVE 360° VIDEO EXPERIENCE FOR ETIHAD AIRWAYS

OLA BJÖRLING
ERIC THORSSELL
Media Monks

MediaMonks were approached by Etihad Airways via their agency The Barbarian Group to create a Virtual Reality experience taking place aboard their Airbus A380, the worlds largest and most luxurious non-private airplane. Challenges included capturing audio including dialogue aboard the real plane, crafting an experience that encourages repeated viewing and combining a sense of truthful realism with a sense of dream-like luxury without relying on a musical score, all in a head tracked spatialized mix. Artistic conventions around non-diegetic sound and their psychological impact in VR also required consideration.

AUDICONCEPTION FOR VIRTUAL NAVIGATION IN ARCHITECTURAL ENVIRONMENTS

DR. JIN YONG JEON
University of Seoul

“Immersion [...], is a perception of being physically present in a non-physical world.” It is critical to think about immersive audio for live music streaming because giving listeners the illusion of being transported to a different acoustic environment makes the experience of streaming much more real. In this paper, we are describing various approaches to enable audio engineers to create immersive audio content for live streaming, whether using existing tools and network infrastructure and delivering static binaural audio, or getting ready for emerging tools and workflows for Virtual Reality streaming.

CREATING CINEMATIC HIGH END VR AUDIO FOR ETIHAD AIRWAYS

OLA BJÖRLING
ERIC THORSSELL
Media Monks

MediaMonks were approached by Etihad Airways via their agency The Barbarian Group to create a Virtual Reality experience taking place aboard their Airbus A380, the worlds largest and most luxurious non-private airplane. Challenges included capturing audio including dialogue aboard the real plane, crafting an experience that encourages repeated viewing and combining a sense of truthful realism with a sense of dream-like luxury without relying on a musical score, all in a head tracked spatialized mix. Artistic conventions around non-diegetic sound and their psychological impact in VR also required consideration.

CREATE AN IMMERSIVE 360°-AV CONCERT EXPERIENCE AT THE 50TH MONTREUX JAZZ FESTIVAL USING REAL-TIME ROOM SIMULATION

SÖNKE FELZER
DIRK SCHRODER
FABIAN KAUBER
AudioBorn GmbH

The Montreux Jazz Festival is the second largest jazz festival in the world. Since the beginning 50 years ago, all concerts have been recorded for the Montreux Jazz Archive, a unique treasure and the largest collection of live music, declared Unesco World Heritage. Following the vision of the deceased founder Claude Nobs, who always pushed the boundaries by applying latest recording technologies, this year’s 50th anniversary of the festival introduced capturing of 3D-audio and 360° stereoscopic video. Using a virtual reality camera, ambisonics microphones, as well as multitrack audio recording with 3D post-processing, an immersive capture and reproduction was achieved. This contribution highlights challenges, experiences and solutions of the preparation, recording, post-processing and release of this immersive production.
Dolby has been a pioneer in developing world's leading object-based audio technologies and mixing tools for filmmakers and sound engineers around the world. In the last two years, we have also been working closely with a number of VR pioneers in the content community to develop the tools and playback technologies for enabling high quality linear VR experiences. This workshop will cover the unique advantages of using object-based audio mixing for cinematic and experiential VR experiences. The AES audience can walk away with an understanding of the power and flexibility of object-based audio mixing for creating more precise and convincing sound to match the visual — giving viewers a strong sense of presence.

ABSTRACT

THEATER | 9:30AM
OBJECT BASED AUDIO MIXING FOR AR/VR APPLICATIONS
Chair:
CERI THOMAS
Dolby Laboratories
Participants:
NATHANIEL KUNKEL
JURGEN SCHARPF
Dolby Laboratories
TIM GEDEMER
Source Sound Inc.

ABSTRACT

Dolby has been a pioneer in developing world’s leading object-based audio technologies and mixing tools for filmmakers and sound engineers around the world. In the last two years, we have also been working closely with a number of VR pioneers in the content community to develop the tools and playback technologies for enabling high quality linear VR experiences. This workshop will cover the unique advantages of using object-based audio mixing for cinematic and experiential VR experiences. The AES audience can walk away with an understanding of the power and flexibility of object-based audio mixing for creating more precise and convincing sound to match the visual — giving viewers a strong sense of presence.
ABSTRACT
This workshop will guide participants in the use of the FB360 Spatial Workstation toolset for 360 spatialized audio work in VR, from both the technology and content creation perspectives. It will cover: Session configuration for VST (Reaper/Nuendo) and AAX (Pro Tools HD). A deep exploration of the tools and feature set for a variety of project types, highlighting examples and case studies. Step-by-step workflows to stay organized and achieve best-in-class VR audio outcomes. Maintaining differentiated spatialized vs non-spatialized experiences across delivery formats. Encoding, levels and ingestion considerations across different platforms (mobile iOS/Android, Oculus Rift etc). The role and future developments of FB360 Spatial Workstation for audio in VR and AR.

THEATER | 10:30AM
FACEBOOK 360 SPATIAL WORKSTATION: TOOLS, WORKFLOWS AND BEST PRACTICES
JOEL DOUEK
BENEDICT GREEN
Ecco
VARUN NAIR
2 Big Ears

THEATER | 11:30AM
IMMERSIVE SOUND CAPTURE FOR CINEMATIC VIRTUAL REALITY

Chair: SOFIA BRAZZOLA
Sennheiser

Participants:
HENRIK OPPERMANN
Visualise
JEAN PASCAL BEAUDOIN
Headspace Studio (Felix & Paul Studios)
BENEDICT GREEN
Ecco VR
MIKKEL NYMAND
Sennheiser

ABSTRACT
The workshop will explore the requirements and best practices of on-location sound capture for Cinematic Virtual Reality. The panel will sketch out the differences for the on-site sound engineer when working on a Cinematic VR shoot compared to a traditional cinema shoot. In this context, it will examine the benefits and draw backs of different spatial audio capture solutions – such as binaural and Ambisonics – and look at their best practices. As well, the panel will look at when and how to capture non-spatial sources on set and discuss the still unresolved pain points facing location engineers today.
A LIGHTWEIGHT & VERSATILE 3D AUDIO CODEC FOR STORING & TRANSMITTING IMMERSIVE AUDIO AND ITS APPLICATION TO LIVE VR 360 EVENTS

FRANÇOIS BECKER
CLEMENT CARRON
Longcat Audio Technologies

ABSTRACT
Many producers are currently adopting 360 content creation. For image production, multiple hardware and software solutions are now available off the shelf. However, although audio is a key point to immersion, this is not paralleled on the audio side. An adequate, versatile codec for 3D audio is introduced in this workshop that adapts seamlessly to the needs of the VR industry, from storage to production, distribution/delivery, and rendering. Besides VR, the presented technology suite also finds uses for 2D movies, music, telepresence & teleconferencing. Other related topics will be addressed: hybrid sound capture for live events, production formats, and integrated rendering techniques.

ROOM 409A | 9:30AM
PERCEPTUAL CONSIDERATION FOR VR/AR

SPATIAL AUDITORY FEEDBACK IN RESPONSE TO TRACKED EYE POSITION

DR. DURAND BEGAULT
NASA ARC

Fixation of eye gaze toward one or more specific positions or regions of visual space is a desirable feature within several types of high-stress human interfaces, including vehicular operation, flight deck control, target acquisition, etc. It is therefore desirable to have a means to give spatial auditory feedback to a human in such a system about whether or not the gaze is specifically directed towards a desired position. Alternatively, it is desirable to use eye position as a means of controlling a device that provides auditory feedback so that there is a correspondence between eye position and control voltages that manipulate aspects of an auditory cue that includes spatial position, pitch and/or timbre.

PERCEPTUAL WEIGHTING OF BINAURAL INFORMATION: TOWARD AN AUDITORY PERCEPTUAL "SPATIAL CODEC" FOR AUDITORY AUGMENTED REALITY

DR. CHRIS STECKER
ANNA DIEDESCH
Vanderbilt University School of Medicine

Auditory augmented reality (AR) requires accurate estimation of spatial information conveyed in the natural scene, coupled with accurate spatial synthesis of virtual sounds to be integrated within it. Solutions to both problems should consider the capabilities and limitations of the human binaural system, in order to maximize relevant over distracting acoustic information and enhance perceptual integration across AR layers. Recent studies have measured how human listeners integrate spatial information across multiple conflicting cues, revealing patterns of "perceptual weighting" that sample the auditory scene in a robust but spectrotemporally sparse manner. Such patterns can be exploited for binaural analysis and synthesis, much as time-frequency masking patterns are exploited by perceptual audio codecs, to improve efficiency and enhance perceptual integration.

DEEPER/net: INDIVIDUALIZING SPATIAL AUDIO WITH PHOTOGRAPHY, EAR SHAPE MODELING, AND NEURAL NETWORKS

SHOKEN KANEKO
TSUKASA SUENAGA
SATOSHI SEKINE
Yamaha Corporation

Individualizing spatial audio is of crucial importance for high-quality virtual and augmented reality audio. In this paper, we propose a method for individualizing spatial audio, by combining the recently proposed ear shape modeling technique with computer vision and machine learning. We use a convolutional neural network to obtain estimates of the ear shape model parameters from stereo photographs of the user ear. The individualized ear shape and its associated individualized head-related transfer function (HRTF) can be calculated from the obtained parameters, based on the ear shape model and numerical acoustic simulations. Preliminary experiments, evaluating the shapes of the estimated individual ears, proved the effect of individualization.

ADJUSTMENT OF THE DIRECT-TO-REVERBERANT-ENERGY-RATIO TO REACH EXTERNALIZATION WITHIN A BINAURAL SYNTHESIS SYSTEM

DR. THOMAS SPORER
Fraunhofer Institute for Digital Media Technology

The contribution presents a study which investigates the perception of spatial audio reproduced by a binaural synthesis system. The quality features externalization and room congruence are measured within a listening test. Former studies imply that especially externalization is decreased if acoustic divergence between the synthesized and listening room exists. Other studies show that the adjustment of the Direct-to-Reverberant-Energy-Ratio (DRR) can increase the perceived congruence between synthesized and listening room. Within this experiment test persons are able to adjust the DRR of the synthesized and listening room. The ratings show that the test persons are able to adjust DRR of the listening room and therefore externalization increases.
The following paper documents the composition, recording and post-production of a number of works of instrumental spatial music for a 360 video and audio presentation. The filming and recording of an orchestral work of spatial music is described with particular reference to the various ambisonic microphones used in the recordings, post production techniques, and the delivery of 360 video with matching 360 audio. The recording and production of a second performance of a newly composed spatial work for an acoustic quartet is also presented and the relationship between spatial music and 360 content is discussed. Finally, an exploration of the creative possibilities of VR in terms of soundscape and acousmatic composition is presented.

POSITIONING OF MUSICAL FORGROUND PARTS IN SURROUNDING SOUND STAGES

CHRISTOPH HOLD

LUKAS NAGEL

DR. HAGEN WIESTORF

DR. ALEXANDER RAAKE

Technische Universität Berlin

Object based audio offers several new possibilities during the sound mixing process. While stereophonic mixing techniques are highly developed, not all of them generate promising results in an object-based audio environment. An outstanding feature is the new approach of positioning sound objects in the musical sound scene, providing the opportunity of stable localization throughout the whole listening area.

Previous studies have shown that even if object-based audio reproduction systems can enhance the playback situation, the critical and guiding attributes of the mix are still uncertain. This study investigates the impact of different spatial distributions of sound objects on listener preference, with a special emphasis on the distinction of high attention foreground parts of the presented music track.

THE SOUNDFIELD AS SOUND OBJECT: VIRTUAL REALITY ENVIRONMENTS AS A THREE-DIMENSIONAL CANVAS FOR MUSIC COMPOSITION

DR. RICHARD GRAHAM

DR. SETH CLUETT

Stevens Institute of Technology

Our paper presents ideas raised by recent projects exploring the embellishment, augmentation, and extension of environmental cues, spatial mapping, and immersive potential of scalable multi-channel audio systems for virtual and augmented reality. Moving beyond issues of reproductive veracity raised by merely recreating the soundscape of the physical world, these works exploit characteristics of the natural world to accomplish creative goals that include the development of models for interactive composition, composing with physical and abstract spatial gestures, and linking sound and image. We are presenting a novel system that allows the user to treat the soundfield as a fundamental building block for spatial music composition and sound design.

CAPTURING AND RENDERING 360 VR AUDIO USING CARDIOID MICROPHONES

DR. HYUNKOOK LEE

University of Huddersfield

Recording and listening experiments were carried out to evaluate the horizontal localisation performances of quadraphonic near-coincident and coincident (B-format) microphone configurations in both loudspeaker and binaural reproductions with simulated head rotations. The design philosophy for the near-coincident arrays was the "equal segment microphone array" concept by Williams. Three microphone spacings of 50cm, 30cm and 24cm, which were determined based on three different stereophonic localisation models, were compared. Results show that the localisation performances of the near-coincident configurations were considerably better than that of the coincident one overall. The 50cm spacing achieved the intended stereophonic recording angle of 90° more accurately and consistently than the 30cm and 24cm. However, the differences among these spacings in response distribution were relatively small.
2016 AES CONFERENCE

AUDIO FOR VIRTUAL AND AUGMENTED REALITY

LOS ANGELES CONVENTION CENTER